Quantile Association Regression Models

It is often important to study the association between two continuous variables. In this work, we propose a novel regression framework for assessing conditional associations on quantiles. We develop general methodology which permits covariate effects on both the marginal quantile models for the two variables and their quantile associations. The proposed quantile copula models have straightforward interpretation, facilitating a comprehensive view of association structure which is much richer than that based on standard product moment and rank correlations. We show that the resulting estimators are uniformly consistent and weakly convergent as a process of the quantile index. Simple variance estimators are presented which perform well in numerical studies. Extensive simulations and a real data example demonstrate the practical utility of the methodology. Supplementary materials for this article are available online.

[1]  A. Dreher Modeling Survival Data Extending The Cox Model , 2016 .

[2]  Lei Pang,et al.  Variance estimation in censored quantile regression via induced smoothing , 2012, Comput. Stat. Data Anal..

[3]  I. Gijbels,et al.  Estimation of a Conditional Copula and Association Measures , 2011 .

[4]  Radu V. Craiu,et al.  Dependence Calibration in Conditional Copulas: A Nonparametric Approach , 2011, Biometrics.

[5]  Irène Gijbels,et al.  Conditional copulas, association measures and their applications , 2011, Comput. Stat. Data Anal..

[6]  Edward L. Melnick,et al.  Modeling Survival Data , 2011, International Encyclopedia of Statistical Science.

[7]  Min Zhu,et al.  Quantile regression without the curse of unsmoothness , 2009, Comput. Stat. Data Anal..

[8]  Ying Wei An Approach to Multivariate Covariate-Dependent Quantile Contours With Application to Bivariate Conditional Growth Charts , 2008 .

[9]  M. Gorfine,et al.  On robustness of marginal regression coefficient estimates and hazard functions in multivariate survival analysis of family data when the frailty distribution is mis‐specified , 2007, Statistics in medicine.

[10]  Friedrich Schmid,et al.  Nonparametric inference on multivariate versions of Blomqvist’s beta and related measures of tail dependence , 2007 .

[11]  Xuming He,et al.  Power Transformation Toward a Linear Regression Quantile , 2007 .

[12]  B. M. Brown,et al.  Induced smoothing for rank regression with censored survival times , 2007, Statistics in medicine.

[13]  R. Koenker,et al.  Regression Quantiles , 2007 .

[14]  N. Kolev,et al.  Copulas: A Review and Recent Developments , 2006 .

[15]  D. Zucker,et al.  Prospective survival analysis with a general semiparametric shared frailty model: A pseudo full likelihood approach , 2005, math/0505387.

[16]  B. M. Brown,et al.  Standard errors and covariance matrices for smoothed rank estimators , 2005 .

[17]  R. Koenker Quantile Regression: Name Index , 2005 .

[18]  M. Kosorok,et al.  Robust Inference for Univariate Proportional Hazards Frailty Regression Models , 2004, math/0410081.

[19]  Xuming He,et al.  A Lack-of-Fit Test for Quantile Regression , 2003 .

[20]  S. Kotz,et al.  A new measure of linear local dependence , 2003 .

[21]  James R. Kenyon,et al.  Analysis of Multivariate Survival Data , 2002, Technometrics.

[22]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[23]  Janet E. Heffernan,et al.  Dependence Measures for Extreme Value Analyses , 1999 .

[24]  C. Borkowf A NEW METHOD FOR APPROXIMATING THE ASYMPTOTIC VARIANCE OF SPEARMAN'S RANK CORRELATION , 1999 .

[25]  M. C. Jones,et al.  Local Linear Quantile Regression , 1998 .

[26]  R. Carroll,et al.  Analyzing bivariate continuous data grouped into categories defined by empirical quantiles of marginal distributions. , 1997, Biometrics.

[27]  Ross L. Prentice,et al.  On assessing the strength of dependency between failure time variates , 1996 .

[28]  P. Diggle Analysis of Longitudinal Data , 1995 .

[29]  Eric T. Bradlow,et al.  Correlation Curves as Local Measures of Variance Explained by Regression , 1994 .

[30]  Z. Ying,et al.  Checking the Cox model with cumulative sums of martingale-based residuals , 1993 .

[31]  K. Doksum,et al.  Correlation Curves: Measures of Association as Functions of Covariate Values , 1993 .

[32]  Jianwen Cai,et al.  Covariance and survivor function estimation using censored multivariate failure time data , 1992 .

[33]  Thomas A. Louis,et al.  Time-Dependent Association Measures for Bivariate Survival Distributions , 1992 .

[34]  D. Oakes,et al.  Bivariate survival models induced by frailties , 1989 .

[35]  P. Holland,et al.  Dependence function for continuous bivariate densities , 1987 .

[36]  D. Oakes A Model for Association in Bivariate Survival Data , 1982 .

[37]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[38]  Robert C. Nichols,et al.  Heredity, Environment, and Personality: A Study of 850 Sets of Twins , 1976 .

[39]  J. Loehlin AN ANALYSIS OF ALCOHOL‐RELATED QUESTIONNAIRE ITEMS FROM THE NATIONAL MERIT TWIN STUDY , 1972, Annals of the New York Academy of Sciences.

[40]  Masaaki Sibuya,et al.  Bivariate extreme statistics, I , 1960 .

[41]  Nils Blomqvist,et al.  On a Measure of Dependence Between two Random Variables , 1950 .