Stochastic finite element-based reliability analysis of space frames

Abstract In the present paper the weighted integral method in conjunction with Monte Carlo simulation is used for the stochastic finite element-based reliability analysis of space frames. The limit state analysis required at each Monte Carlo simulation is performed using a non-holonomic step-by-step elasto-plastic analysis based on the plastic node method in conjunction with efficient solution techniques. This implementation results in cost effective solutions both in terms of computing time and storage requirements. The numerical results presented demonstrate that this approach provides a realistic treatment for the stochastic finite element-based reliability analysis of large scale three-dimensional building frames.

[1]  Michael Pecht Reliability and Optimization of Structural Systems '88, Lecture Notes in Engineering , 1991 .

[2]  Manolis Papadrakakis,et al.  Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation , 1996 .

[3]  M. Papadrakakis,et al.  A computationally efficient method for the limit elasto plastic analysis of space frames , 1995 .

[4]  Ted Belytschko,et al.  Finite element methods in probabilistic mechanics , 1987 .

[5]  Masanobu Shinozuka,et al.  Neumann Expansion for Stochastic Finite Element Analysis , 1988 .

[6]  Di Blockley,et al.  Structural Safety & Reliability , 1994 .

[7]  Manolis Papadrakakis,et al.  A simple and efficient solution method for the limit elasto-plastic analysis of plane frames , 1991 .

[8]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[9]  Hid N. Grouni,et al.  Methods of structural safety , 1986 .

[10]  George Deodatis,et al.  Variability Response Functions of Stochastic Plane Stress/Strain Problems , 1994 .

[11]  John F. Abel,et al.  Yield surface applications in nonlinear steel frame analysis , 1982 .

[12]  M. Shinozuka,et al.  Structural Response Variability III , 1987 .

[13]  Pol D. Spanos,et al.  Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .

[14]  Y. Ueda,et al.  The plastic node method: A new method of plastic analysis , 1982 .

[15]  M. Shinozuka,et al.  Simulation of Stochastic Processes by Spectral Representation , 1991 .

[16]  George Deodatis,et al.  Weighted Integral Method. I: Stochastic Stiffness Matrix , 1991 .

[17]  Masanobu Shinozuka,et al.  Response Variability of Stochastic Finite Element Systems , 1988 .

[18]  Manolis Papadrakakis,et al.  Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation , 1996 .

[19]  M. Papadrakakis,et al.  Accuracy and effectiveness of preconditioned conjugate gradient algorithms for large and ill-conditioned problems , 1993 .

[20]  Manolis Papadrakakis,et al.  An optimized computer implementation of incomplete Cholesky factorization , 1994 .

[21]  M. Shinozuka Basic Analysis of Structural Safety , 1983 .

[22]  Masanobu Shinozuka,et al.  Weighted Integral Method. II: Response Variability and Reliability , 1991 .

[23]  G. Deodatis Stochastic FEM sensitivity analysis of nonlinear dynamic problems , 1989 .