Evaluating Innovative CAD Techniques in the Creation of Conformal Cellular Structures

This paper focusses on demonstrating the effectiveness of our new code at producing curved, formerly planar structures that comprise complex internal architecture. This development is particularly significant as it will, ultimately, allow further exploitation of the design freedom offered by additive manufacturing (AM). This particular application focusses on head impact protection, and builds upon our previous work describing the promising mechanical performance that can be achieved by parametrically varying cellular shape, wall thicknesses and relative densities (Soe in Second international conference on sustainable design and manufacturing, 2015 [1]). In this current work, we explore the translation of these design concepts into application-based environments, focusing particularly on achieving structural contours whilst retaining mechanical performance. This paper aims to demonstrate our success at contouring previously-planar structures around hemispherical (‘head’) geometry, whilst retaining mechanical performance through the relative alignment of individual cellular structures. We first evaluate the capabilities of existing packages: (1) PTC Creo Parametric (mechanical CAD system) and, (2) Materialise 3-maticSTL (lightweight structures module); before demonstrating the effectiveness of our new script embedded within Autodesk 3D Studio Max. We conclude by comparing results from our script with equivalent data from the commercially-available software.