Deductive verification of simple foraging robotic behaviours

Purpose – The purpose of this paper is to consider the logical specification, and automated verification, of high‐level robotic behaviours.Design/methodology/approach – The paper uses temporal logic as a formal language for providing abstractions of foraging robot behaviour, and successively extends this to multiple robots, items of food for the robots to collect, and constraints on the real‐time behaviour of robots. For each of these scenarios, proofs of relevant properties are carried out in a fully automated way. In addition to automated deductive proofs in propositional temporal logic, the possibility of having arbitrary numbers of robots involved is considered, thus allowing representations of robot swarms. This leads towards the use of first‐order temporal logics (FOTLs).Findings – The proofs of many properties are achieved using automatic deductive temporal provers for the propositional and FOTLs.Research limitations/implications – Many details of the problem, such as location of the robots, avoida...

[1]  Michael Fisher,et al.  Temporal Verification of Fault-Tolerant Protocols , 2009, Methods, Models and Tools for Fault Tolerance.

[2]  Cliff B. Jones,et al.  Methods, Models and Tools for Fault Tolerance , 2009, Methods, Models and Tools for Fault Tolerance.

[3]  Hadas Kress-Gazit,et al.  Temporal Logic Motion Planning for Mobile Robots , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[4]  Alan F. T. Winfield,et al.  A methodology for provably stable behaviour-based intelligent control , 2006, Robotics Auton. Syst..

[5]  Pierre Wolper,et al.  The tableau method for temporal logic: an overview , 1985 .

[6]  Clare Dixon,et al.  On Formal Specification of Emergent Behaviours in Swarm Robotic Systems , 2005 .

[7]  Peter Balsiger,et al.  Logics Workbench 1.0 , 1998, TABLEAUX.

[8]  Alcherio Martinoli,et al.  Modeling Swarm Robotic Systems: a Case Study in Collaborative Distributed Manipulation , 2004, Int. J. Robotics Res..

[9]  Kristina Lerman,et al.  A Review of Probabilistic Macroscopic Models for Swarm Robotic Systems , 2004, Swarm Robotics.

[10]  Clare Dixon,et al.  Temporal Logic with Capacity Constraints , 2007, FroCoS.

[11]  Barbara Webb,et al.  Swarm Intelligence: From Natural to Artificial Systems , 2002, Connect. Sci..

[12]  Calin Belta,et al.  Temporal Logic Planning and Control of Robotic Swarms by Hierarchical Abstractions , 2007, IEEE Transactions on Robotics.

[13]  Frank Wolter,et al.  On the computational complexity of decidable fragments of first-order linear temporal logics , 2003, 10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings..

[14]  Pierre Wolper,et al.  The Complementation Problem for Büchi Automata with Appplications to Temporal Logic , 1987, Theor. Comput. Sci..

[15]  Rajeev Goré,et al.  The Tableaux Work Bench , 2003, TABLEAUX.

[16]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[17]  Antonio Ruiz Cortés,et al.  Using Formal Methods and Agent-Oriented Software Engineering for Modeling NASA Swarm-Based Systems , 2007, 2007 IEEE Swarm Intelligence Symposium.

[18]  Clare Dixon,et al.  Clausal temporal resolution , 1999, TOCL.

[19]  Stefan Schwendimann,et al.  A New One-Pass Tableau Calculus for PLTL , 1998, TABLEAUX.

[20]  Frank Wolter,et al.  Decidable fragment of first-order temporal logics , 2000, Ann. Pure Appl. Log..

[21]  Marco Pistore,et al.  NuSMV 2: An OpenSource Tool for Symbolic Model Checking , 2002, CAV.

[22]  Clare Dixon,et al.  Mechanising first-order temporal resolution , 2005, Inf. Comput..

[23]  Michael Fisher,et al.  Temporal Representation and Reasoning , 2008, Handbook of Knowledge Representation.

[24]  Diana F. Spears,et al.  Reconfigurable robot teams: modeling and supervisory control , 2004, IEEE Transactions on Control Systems Technology.

[25]  Gerardo Beni,et al.  From Swarm Intelligence to Swarm Robotics , 2004, Swarm Robotics.

[26]  Alan F. T. Winfield,et al.  Special issue on swarm robotics , 2008, Swarm Intelligence.

[27]  Clare Dixon,et al.  On the Formal Specification of Emergent Behaviours of Swarm Robotics Systems , 2005 .

[28]  A. Pnueli The Temporal Semantics of Concurrent Programs , 1979, Theor. Comput. Sci..

[29]  Gljm Geert Janssen,et al.  Logics for digital circuit verification : theory, algorithms, and applications , 1999 .

[30]  William M. Spears,et al.  Distributed, Physics-Based Control of Swarms of Vehicles , 2004 .

[31]  Alan F. T. Winfield,et al.  Safety in numbers: fault-tolerance in robot swarms , 2006, Int. J. Model. Identif. Control..

[32]  Jie Chen,et al.  Strategies for Energy Optimisation in a Swarm of Foraging Robots , 2006, Swarm Robotics.

[33]  Ullrich Hustadt,et al.  Implementing a fair monodic temporal logic prover , 2010, AI Commun..

[34]  Frank Wolter,et al.  Axiomatizing the monodic fragment of first-order temporal logic , 2002, Ann. Pure Appl. Log..

[35]  Michael Fisher,et al.  Practical Infinite-State Verification with Temporal Reasoning , 2005, VISSAS.

[36]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[37]  Clare Dixon,et al.  Tractable Temporal Reasoning , 2007, IJCAI.

[38]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[39]  Boris Konev,et al.  TeMP: A Temporal Monodic Prover , 2004, IJCAR.

[40]  Stephan Merz,et al.  Model Checking , 2000 .

[41]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[42]  Clare Dixon,et al.  Practical First-Order Temporal Reasoning , 2008, 2008 15th International Symposium on Temporal Representation and Reasoning.

[43]  Boris Konev,et al.  TRP++2.0: A Temporal Resolution Prover , 2003, CADE.