Robust Structural Metric Learning

Metric learning algorithms produce a linear transformation of data which is optimized for a prediction task, such as nearest-neighbor classification or ranking. However, when the input data contains a large portion of noninformative features, existing methods fail to identify the relevant features, and performance degrades accordingly. In this paper, we present an efficient and robust structural metric learning algorithm which enforces group sparsity on the learned transformation, while optimizing for structured ranking output prediction. Experiments on synthetic and real datasets demonstrate that the proposed method outperforms previous methods in both high- and low-noise settings.

[1]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[2]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[3]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[4]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[5]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[6]  Glenn Fung,et al.  Learning sparse metrics via linear programming , 2006, KDD '06.

[7]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[8]  Thierry Bertin-Mahieux,et al.  The Million Song Dataset , 2011, ISMIR.

[9]  Gert R. G. Lanckriet,et al.  Learning Content Similarity for Music Recommendation , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[10]  Thorsten Joachims,et al.  Cutting-plane training of structural SVMs , 2009, Machine Learning.

[11]  Youngmoo E. Kim,et al.  Exploring automatic music annotation with "acoustically-objective" tags , 2010, MIR '10.

[12]  M. Kowalski Sparse regression using mixed norms , 2009 .

[13]  Lei Wang,et al.  Positive Semidefinite Metric Learning with Boosting , 2009, NIPS.

[14]  Kaizhu Huang,et al.  Sparse Metric Learning via Smooth Optimization , 2009, NIPS.

[15]  Inderjit S. Dhillon,et al.  Information-theoretic metric learning , 2006, ICML '07.

[16]  Kaizhu Huang,et al.  Generalized sparse metric learning with relative comparisons , 2011, Knowledge and Information Systems.

[17]  Thorsten Joachims,et al.  A support vector method for multivariate performance measures , 2005, ICML.

[18]  Gert R. G. Lanckriet,et al.  Metric Learning to Rank , 2010, ICML.

[19]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[20]  Zenglin Xu,et al.  Robust Metric Learning by Smooth Optimization , 2010, UAI.

[21]  Bert Huang,et al.  Learning a Distance Metric from a Network , 2011, NIPS.