Hierarchical competitions subserving multi-attribute choice

[1]  A. Rangel,et al.  Informatic parcellation of the network involved in the computation of subjective value. , 2014, Social cognitive and affective neuroscience.

[2]  Nils Kolling,et al.  A neural mechanism underlying failure of optimal choice with multiple alternatives , 2014, Nature Neuroscience.

[3]  Timothy E. J. Behrens,et al.  Brain Systems for Probabilistic and Dynamic Prediction: Computational Specificity and Integration , 2013, PLoS biology.

[4]  Mark W. Woolrich,et al.  Trial-Type Dependent Frames of Reference for Value Comparison , 2013, PLoS Comput. Biol..

[5]  Antonio Rangel,et al.  Stimulus Value Signals in Ventromedial PFC Reflect the Integration of Attribute Value Signals Computed in Fusiform Gyrus and Posterior Superior Temporal Gyrus , 2013, The Journal of Neuroscience.

[6]  Mel W. Khaw,et al.  Normalization is a general neural mechanism for context-dependent decision making , 2013, Proceedings of the National Academy of Sciences.

[7]  Timothy E. J. Behrens,et al.  Human and Monkey Ventral Prefrontal Fibers Use the Same Organizational Principles to Reach Their Targets: Tracing versus Tractography , 2013, The Journal of Neuroscience.

[8]  Timothy Edward John Behrens,et al.  Ventromedial Prefrontal and Anterior Cingulate Cortex Adopt Choice and Default Reference Frames during Sequential Multi-Alternative Choice , 2013, The Journal of Neuroscience.

[9]  A. Rangel,et al.  Value normalization in decision making: theory and evidence , 2012, Current Opinion in Neurobiology.

[10]  Dino J. Levy,et al.  The root of all value: a neural common currency for choice , 2012, Current Opinion in Neurobiology.

[11]  Timothy E. J. Behrens,et al.  Tools of the trade: psychophysiological interactions and functional connectivity. , 2012, Social cognitive and affective neuroscience.

[12]  M. Woolrich,et al.  Mechanisms underlying cortical activity during value-guided choice , 2011, Nature Neuroscience.

[13]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[14]  Gordon D. A. Brown,et al.  Does the brain calculate value? , 2011, Trends in Cognitive Sciences.

[15]  Colin Camerer,et al.  Transformation of stimulus value signals into motor commands during simple choice , 2011, Proceedings of the National Academy of Sciences.

[16]  Joshua W. Brown,et al.  Medial prefrontal cortex as an action-outcome predictor , 2011, Nature Neuroscience.

[17]  Soyoung Q. Park,et al.  Neurobiology of Value Integration: When Value Impacts Valuation , 2011, The Journal of Neuroscience.

[18]  C. Padoa-Schioppa Neurobiology of economic choice: a good-based model. , 2011, Annual review of neuroscience.

[19]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity , 2011, The Journal of Neuroscience.

[20]  Timothy Edward John Behrens,et al.  Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex , 2010, Proceedings of the National Academy of Sciences.

[21]  N. Chater,et al.  Preference reversal in multiattribute choice. , 2010, Psychological review.

[22]  Marios G Philiastides,et al.  A mechanistic account of value computation in the human brain , 2010, Proceedings of the National Academy of Sciences.

[23]  N. Daw,et al.  Human Reinforcement Learning Subdivides Structured Action Spaces by Learning Effector-Specific Values , 2009, The Journal of Neuroscience.

[24]  P. Glimcher,et al.  The Neurobiology of Decision: Consensus and Controversy , 2009, Neuron.

[25]  Thomas H. B. FitzGerald,et al.  The Role of Human Orbitofrontal Cortex in Value Comparison for Incommensurable Objects , 2009, The Journal of Neuroscience.

[26]  Timothy Edward John Behrens,et al.  How Green Is the Grass on the Other Side? Frontopolar Cortex and the Evidence in Favor of Alternative Courses of Action , 2009, Neuron.

[27]  B. Balleine,et al.  A specific role for posterior dorsolateral striatum in human habit learning , 2009, The European journal of neuroscience.

[28]  W. K. Simmons,et al.  Circular analysis in systems neuroscience: the dangers of double dipping , 2009, Nature Neuroscience.

[29]  Mark W. Woolrich,et al.  Bayesian analysis of neuroimaging data in FSL , 2009, NeuroImage.

[30]  Timothy E. J. Behrens,et al.  Frontal Cortex Subregions Play Distinct Roles in Choices between Actions and Stimuli , 2008, The Journal of Neuroscience.

[31]  Xiao-Jing Wang Decision Making in Recurrent Neuronal Circuits , 2008, Neuron.

[32]  Mark W Woolrich,et al.  Associative learning of social value , 2008, Nature.

[33]  Colin Camerer,et al.  A framework for studying the neurobiology of value-based decision making , 2008, Nature Reviews Neuroscience.

[34]  A. Glöckner,et al.  Multiple-reason decision making based on automatic processing. , 2008, Journal of experimental psychology. Learning, memory, and cognition.

[35]  J. Price Definition of the Orbital Cortex in Relation to Specific Connections with Limbic and Visceral Structures and Other Cortical Regions , 2007, Annals of the New York Academy of Sciences.

[36]  Nikolaus Weiskopf,et al.  Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T , 2006, NeuroImage.

[37]  Jonathan D. Cohen,et al.  The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. , 2006, Psychological review.

[38]  L. Fellows Deciding how to decide: ventromedial frontal lobe damage affects information acquisition in multi-attribute decision making. , 2006, Brain : a journal of neurology.

[39]  Colin Camerer,et al.  When Does "Economic Man" Dominate Social Behavior? , 2006, Science.

[40]  B. Balleine Neural bases of food-seeking: Affect, arousal and reward in corticostriatolimbic circuits , 2005, Physiology & Behavior.

[41]  Philippe Pinel,et al.  Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus , 2004, Neuron.

[42]  Leslie G. Ungerleider,et al.  A general mechanism for perceptual decision-making in the human brain , 2004, Nature.

[43]  James L. McClelland,et al.  Loss aversion and inhibition in dynamical models of multialternative choice. , 2004, Psychological review.

[44]  Gereon R Fink,et al.  Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study , 2004, NeuroImage.

[45]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[46]  Dhanistha Panyasak,et al.  Circuits , 1995, Annals of the New York Academy of Sciences.

[47]  A. Tversky,et al.  Context-dependent preferences , 1993 .

[48]  J. Oller,et al.  Consensus and controversy , 1984 .

[49]  Lennart Sjöberg,et al.  Choice frequency and similarity , 1977 .

[50]  John W. Payne,et al.  Task complexity and contingent processing in decision making: An information search and protocol analysis☆ , 1976 .

[51]  D J McFarland,et al.  The behavioural final common path. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[52]  Anne G E Collins,et al.  Cognitive control over learning: creating, clustering, and generalizing task-set structure. , 2013, Psychological review.

[53]  Theory and Evidence ∗ , 2013 .

[54]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[55]  R. Ratcliff,et al.  Multialternative decision field theory: a dynamic connectionist model of decision making. , 2001, Psychological review.