A robust volume conserving method for character-water interaction

We propose a novel volume conserving framework for character-water interaction, using a novel volume-of-fluid solver on a skinned tetrahedral mesh, enabling the high degree of the spatial adaptivity in order to capture thin films and hair-water interactions. For efficiency, the bulk of the fluid volume is simulated with a standard Eulerian solver which is two way coupled to our skinned arbitrary Lagrangian-Eulerian mesh using a fast, robust, and straight-forward to implement partitioned approach. This allows for a specialized and efficient treatment of the volume-of-fluid solver, since it is only required in a subset of the domain. The combination of conservation of fluid volume and a kinematically deforming skinned mesh allows us to robustly implement interesting effects such as adhesion, and anisotropic porosity. We illustrate the efficacy of our method by simulating various water effects with solid objects and animated characters.

[1]  Chenfanfu Jiang,et al.  An angular momentum conserving affine-particle-in-cell method , 2016, J. Comput. Phys..

[2]  Ann S. Almgren,et al.  An adaptive level set approach for incompressible two-phase flows , 1997 .

[3]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions , 2007, Comput. Animat. Virtual Worlds.

[4]  Ronald Fedkiw,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Hybrid Simulation of Deformable Solids , 2022 .

[5]  Akio Koide,et al.  An Efficient Method of Triangulating Equi-Valued Surfaces by Using Tetrahedral Cells , 1991 .

[6]  Hui,et al.  A SET OF SYMMETRIC QUADRATURE RULES ON TRIANGLES AND TETRAHEDRA , 2009 .

[7]  Ronald Fedkiw,et al.  A Skinned Tetrahedral Mesh for Hair Animation and Hair-Water Interaction , 2019, IEEE Transactions on Visualization and Computer Graphics.

[8]  Andrew Selle,et al.  To appear in the ACM SIGGRAPH conference proceedings A Mass Spring Model for Hair Simulation , 2008 .

[9]  Ronald Fedkiw,et al.  Nonconvex rigid bodies with stacking , 2003, ACM Trans. Graph..

[10]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[11]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[12]  Rahul Narain,et al.  An advection-reflection solver for detail-preserving fluid simulation , 2018, ACM Trans. Graph..

[13]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[14]  Ronald Fedkiw,et al.  Simulating free surface flow with very large time steps , 2012, SCA '12.

[15]  Jessica K. Hodgins,et al.  A point-based method for animating incompressible flow , 2009, SCA '09.

[16]  Matthias Teschner,et al.  Parallel Surface Reconstruction for Particle‐Based Fluids , 2012, Comput. Graph. Forum.

[17]  Eftychios Sifakis,et al.  Power diagrams and sparse paged grids for high resolution adaptive liquids , 2017, ACM Trans. Graph..

[18]  Ronald Fedkiw,et al.  Codimensional surface tension flow on simplicial complexes , 2014, ACM Trans. Graph..

[19]  SolenthalerBarbara,et al.  A unified particle model for fluidsolid interactions , 2007 .

[20]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[21]  Ronald Fedkiw,et al.  Mass and momentum conservation for fluid simulation , 2011, SCA '11.

[22]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[23]  Omar Zarifi,et al.  A positive-definite cut-cell method for strong two-way coupling between fluids and deformable bodies , 2017, Symposium on Computer Animation.

[24]  Ronald Fedkiw,et al.  An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids , 2013, J. Comput. Phys..

[25]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[26]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[27]  Ronald Fedkiw,et al.  Fully automatic generation of anatomical face simulation models , 2015, Symposium on Computer Animation.

[28]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[29]  Heinrich Müller,et al.  Visualization of Implicit Surfaces Using Adaptive Tetrahedrizations , 1997, Scientific Visualization Conference (dagstuhl '97).

[30]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[31]  Frank Losasso,et al.  Simulating water and smoke with an octree data structure , 2004, SIGGRAPH 2004.

[32]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[33]  Wei-Chin Lin,et al.  Coupling Hair with Smoothed Particle Hydrodynamics Fluids , 2014, VRIPHYS.

[34]  Dimitris N. Metaxas,et al.  Animation and control of breaking waves , 2004, SCA '04.

[35]  Dimitris N. Metaxas,et al.  Physics based boiling simulation , 2006, SCA '06.

[36]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[37]  James F. O'Brien,et al.  Eurographics/acm Siggraph Symposium on Computer Animation (2007) Liquid Simulation on Lattice-based Tetrahedral Meshes , 2022 .

[38]  Ronald Fedkiw,et al.  Chimera grids for water simulation , 2013, SCA '13.

[39]  Marie-Paule Cani,et al.  Anatomy transfer , 2013, ACM Trans. Graph..

[40]  Wei Wu,et al.  GPU-accelerated SPH fluids surface reconstruction using two-level spatial uniform grids , 2016, The Visual Computer.

[41]  Christopher Batty,et al.  Tetrahedral Embedded Boundary Methods for Accurate and Flexible Adaptive Fluids , 2010, Comput. Graph. Forum.

[42]  Roman Durikovic,et al.  SPH with small scale details and improved surface reconstruction , 2011, SCC.

[43]  Jihun Yu,et al.  Reconstructing surfaces of particle-based fluids using anisotropic kernels , 2010, SCA '10.

[44]  Yue Gao,et al.  A Level-Set Method for Skinning Animated Particle Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[45]  Tae-Yong Kim,et al.  Coupling 3D Eulerian, Heightfield and Particle Methods for Interactive Simulation of Large Scale Liquid Phenomena , 2014, Symposium on Computer Animation.

[46]  Brent Warren Williams,et al.  Fluid surface reconstruction from particles , 2008 .

[47]  Eitan Grinspun,et al.  A multi-scale model for simulating liquid-fabric interactions , 2018, ACM Trans. Graph..

[48]  Matthias Teschner,et al.  An Efficient Surface Reconstruction Pipeline for Particle-Based Fluids , 2012, VRIPHYS.

[49]  James F. O'Brien,et al.  Fluids in deforming meshes , 2005, SCA '05.

[50]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[51]  Matthias Teschner,et al.  Unified spray, foam and air bubbles for particle-based fluids , 2012, The Visual Computer.

[52]  Robert Bridson,et al.  Robust Topological Operations for Dynamic Explicit Surfaces , 2009, SIAM J. Sci. Comput..

[53]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[54]  Matthias Teschner,et al.  Versatile surface tension and adhesion for SPH fluids , 2013, ACM Trans. Graph..

[55]  Tomoyuki Nishita,et al.  Wetting Effects in Hair Simulation , 2012, Comput. Graph. Forum.

[56]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[57]  Robert Bridson,et al.  Matching fluid simulation elements to surface geometry and topology , 2010, ACM Transactions on Graphics.

[58]  Christopher Wojtan,et al.  Highly adaptive liquid simulations on tetrahedral meshes , 2013, ACM Trans. Graph..

[59]  James F. O'Brien,et al.  Animating gases with hybrid meshes , 2005, ACM Trans. Graph..

[60]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[61]  Ignacio García-Fernández,et al.  Real-time Inextensible Hair with Volume and Shape , 2015, CEIG.

[62]  Ken Museth,et al.  Blobtacular: surfacing particle system in "Pirates of the Caribbean 3" , 2007, SIGGRAPH '07.

[63]  S. Osher,et al.  Spatially adaptive techniques for level set methods and incompressible flow , 2006 .

[64]  Rüdiger Westermann,et al.  Narrow Band FLIP for Liquid Simulations , 2016, Comput. Graph. Forum.

[65]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[66]  James F. O'Brien,et al.  Fluid animation with dynamic meshes , 2006, ACM Trans. Graph..

[67]  Eitan Grinspun,et al.  Supplemental : A Multi-Scale Model for Simulating Liquid-Hair Interactions , 2017 .

[68]  Ronald Fedkiw,et al.  A Crystalline, Red Green Strategy for Meshing Highly Deformable Objects with Tetrahedra , 2003, IMR.

[69]  N. Chentanez,et al.  Solid simulation with oriented particles , 2011, SIGGRAPH 2011.

[70]  James F. Blinn,et al.  A generalization of algebraic surface drawing , 1982, SIGGRAPH.

[71]  Tae-Yong Kim,et al.  Fast Simulation of Inextensible Hair and Fur , 2012, VRIPHYS.

[72]  BridsonRobert,et al.  Nonconvex rigid bodies with stacking , 2003 .

[73]  Robert Bridson,et al.  Resolving fluid boundary layers with particle strength exchange and weak adaptivity , 2016, ACM Trans. Graph..

[74]  Matthias Teschner,et al.  Adaptive Surface Reconstruction for SPH using 3-Level Uniform Grids , 2013, WSCG.

[75]  Greg Turk,et al.  Reconstructing surfaces of particle-based fluids using anisotropic kernels , 2010, SCA 2010.