Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal.

We demonstrate chip-based Tbaud optical signal processing for all-optical performance monitoring, switching and demultiplexing based on the instantaneous Kerr nonlinearity in a dispersion-engineered As(2)S(3) planar waveguide. At the Tbaud transmitter, we use a THz bandwidth radio-frequency spectrum analyzer to perform all-optical performance monitoring and to optimize the optical time division multiplexing stages as well as mitigate impairments, for example, dispersion. At the Tbaud receiver, we demonstrate error-free demultiplexing of a 1.28 Tbit/s single wavelength, return-to-zero signal to 10 Gbit/s via four-wave mixing with negligible system penalty (< 0.5 dB). Excellent performance, including high four-wave mixing conversion efficiency and no indication of an error-floor, was achieved. Our results establish the feasibility of Tbaud signal processing using compact nonlinear planar waveguides for Tbit/s Ethernet applications.

[1]  R. Hui,et al.  Intensity-dependent phase-matching effects on four-wave mixing in optical fibers , 1999 .

[2]  T D Vo,et al.  Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer. , 2010, Optics express.

[3]  T D Vo,et al.  Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip. , 2009, Optics express.

[4]  G. Jacobsen,et al.  Polarization-Independent Optical Demultiplexing Using XPM-Induced Wavelength Shifting in Highly Nonlinear Fiber , 2008, IEEE Photonics Technology Letters.

[5]  F. Gomez-Agis,et al.  640-Gbit/s Data Transmission and Clock Recovery Using an Ultrafast Periodically Poled Lithium Niobate Device , 2009, Journal of Lightwave Technology.

[6]  Junfeng Song,et al.  Improving coupling efficiency of fiber-waveguide coupling with a double-tip coupler. , 2008, Optics express.

[7]  C. Dorrer,et al.  RF spectrum analysis of optical signals using nonlinear optics , 2004, Journal of Lightwave Technology.

[8]  Leif Katsuo Oxenløwe,et al.  1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing , 2009 .

[9]  Yikai Su,et al.  Self-Pumping Wavelength Conversion for DPSK Signals and DQPSK Generation Through Four-Wave Mixing in Highly Nonlinear Optical Fiber , 2006, IEEE Photonics Technology Letters.

[10]  D. Moss,et al.  Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber. , 2005, Optics express.

[11]  B. Luther-Davies,et al.  Submicrometer-Thick Low-Loss As $_2$S$_3$ Planar Waveguides for Nonlinear Optical Devices , 2010, IEEE Photonics Technology Letters.

[12]  H J S Dorren,et al.  All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier. , 2007, Optics letters.

[13]  M D Pelusi,et al.  Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration. , 2007, Optics express.

[14]  Masayuki Matsumoto,et al.  A Fiber-Based All-Optical 3R Regenerator for DPSK Signals , 2006, IEEE Photonics Technology Letters.

[15]  Michael Galili,et al.  Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel. , 2010, Optics express.

[16]  N. Kumano,et al.  Pulse compression techniques using highly nonlinear fibers , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[17]  B. Luther-Davies,et al.  Ultra-High Nonlinear As$_2$ S$_3$ Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing , 2007, IEEE Photonics Technology Letters.

[18]  Masataka Nakazawa,et al.  TDM single channel 640 Gbit/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror , 1998 .

[19]  D J Moss,et al.  High bit rate all-optical signal processing in a fiber photonic wire. , 2008, Optics express.

[20]  R. C. Kistler,et al.  Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon , 1989 .

[21]  Jing Xu,et al.  Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing. , 2009, Optics express.

[22]  J. Schroder,et al.  Multi-Impairment Monitoring at 320 Gb/s Based on Cross-Phase Modulation Radio-Frequency Spectrum Analyzer , 2010, IEEE Photonics Technology Letters.

[23]  B. Luther-Davies,et al.  Properties of GexAsySe 1x-y glasses for all-optical signal processing , 2008 .

[24]  Peter A. Andrekson,et al.  Fiber-based optical parametric amplifiers and their applications , 2002 .

[25]  B. Eggleton,et al.  Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth , 2009 .

[26]  A. Ellis,et al.  Semiconductor laser amplifiers for ultrafast all-optical signal processing , 1997 .

[27]  Jian Zhao,et al.  Approaching the Non-Linear Shannon Limit , 2010, Journal of Lightwave Technology.

[28]  M. Nakazawa,et al.  1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator , 2000 .

[29]  T. Tsuchizawa,et al.  Low loss mode size converter from 0.3 /spl mu/m square Si wire waveguides to singlemode fibres , 2002 .

[30]  H. Weber,et al.  Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission , 2006 .

[31]  Steve Madden,et al.  Properties of GexAsySe1-x-y glasses for all-optical signal processing. , 2008, Optics express.