Resolution of strongly competitive product channels with optimal dynamic discrimination: application to flavins.

Fundamental molecular selectivity limits are probed by exploiting laser-controlled quantum interferences for the creation of distinct spectral signatures in two flavin molecules, erstwhile nearly indistinguishable via steady-state methods. Optimal dynamic discrimination (ODD) uses optimally shaped laser fields to transiently amplify minute molecular variations that would otherwise go unnoticed with linear absorption and fluorescence techniques. ODD is experimentally demonstrated by combining an optimally shaped UV pump pulse with a time-delayed, fluorescence-depleting IR pulse for discrimination amongst riboflavin and flavin mononucleotide in aqueous solution, which are structurally and spectroscopically very similar. Closed-loop, adaptive pulse shaping discovers a set of UV pulses that induce disparate responses from the two flavins and allows for concomitant flavin discrimination of ∼16σ. Additionally, attainment of ODD permits quantitative, analytical detection of the individual constituents in a flavin mixture. The successful implementation of ODD on quantum systems of such high complexity bodes well for the future development of the field and the use of ODD techniques in a variety of demanding practical applications.

[1]  K. Ueda,et al.  Real-time observation of phase-controlled molecular wave-packet interference. , 2006, Physical review letters.

[2]  Herschel Rabitz,et al.  Optimal Dynamic Discrimination of Similar Molecules through Quantum Learning Control , 2002 .

[3]  Alfons Penzkofer,et al.  Photo-induced degradation of some flavins in aqueous solution , 2005 .

[4]  R. de Vivie-Riedle,et al.  Pulse trains in molecular dynamics and coherent spectroscopy: a theoretical study , 2009 .

[5]  Herschel Rabitz,et al.  Optimal control of quantum systems: Origins of inherent robustness to control field fluctuations , 2002 .

[6]  S. Shoelson,et al.  Conformational changes of the insulin receptor upon insulin binding and activation as monitored by fluorescence spectroscopy. , 1997, Biochemistry.

[7]  I. Hertel,et al.  Control of giant breathing motion in c60 with temporally shaped laser pulses. , 2007, Physical review letters.

[8]  P. H. Bucksbaum,et al.  Coherent control using adaptive learning algorithms , 2001 .

[9]  L. Wöste,et al.  Isotope selective photoionization of NaK by optimal control: theory and experiment. , 2006, The Journal of chemical physics.

[10]  Herschel Rabitz,et al.  Quantum control of tightly competitive product channels. , 2009, Physical review letters.

[11]  N. Getoff,et al.  Photoejection of electrons from flavins in polar media. , 1978, Science.

[12]  P. Hegemann,et al.  pH dependence of the absorption and emission behaviour of riboflavin in aqueous solution , 2002 .

[13]  Herschel Rabitz,et al.  Incorporating physical implementation concerns into closed loop quantum control experiments , 2000 .

[14]  C. Conover,et al.  Closed-loop control of intense-laser fragmentation of S 8 , 2005 .

[15]  G. Wiederrecht,et al.  Femtosecond Pulse Sequences Used for Optical Manipulation of Molecular Motion , 1990, Science.

[16]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[17]  Herschel Rabitz,et al.  Assessing and managing laser system stability for quantum control experiments , 2006 .

[18]  R. Birge,et al.  Coherent Control of Retinal Isomerization in Bacteriorhodopsin , 2006, Science.

[19]  B. Sussman,et al.  Dynamic Stark Control of Photochemical Processes , 2006, Science.

[20]  I. Christov,et al.  Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays , 2000, Nature.

[21]  A. Dobryakov,et al.  Photoinduced processes in riboflavin: superposition of pi pi*-n pi* states by vibronic coupling, transfer of vibrational coherence, and population dynamics under solvent control. , 2008, The journal of physical chemistry. A.

[22]  K. Foley,et al.  MOLECULAR INTERACTION OF ISOALLOXAZINE DERIVATIVES. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Herschel Rabitz,et al.  Optimal dynamic discrimination of similar quantum systems with time series data. , 2005, The Journal of chemical physics.

[24]  G. Gerber,et al.  Photoselective adaptive femtosecond quantum control in the liquid phase , 2001, Nature.

[25]  D. Nesbitt,et al.  Vibrational Energy Flow in Highly Excited Molecules: Role of Intramolecular Vibrational Redistribution , 1996 .

[26]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[27]  R. Mathies,et al.  Theory of dynamic absorption spectroscopy of nonstationary states. 4. Application to 12-fs resonant impulsive Raman spectroscopy of bacteriorhodopsin , 1992 .

[28]  A. Visser,et al.  MOLECULAR LUMINESCENCE OF SOME ISOALLOXAZINES IN APOLAR SOLVENTS AT VARIOUS TEMPERATURES , 1979 .

[29]  Charles G. Durfee,et al.  High power ultrafast lasers , 1998 .

[30]  Herschel Rabitz,et al.  Laboratory observation of quantum control level sets , 2006 .

[31]  Y. Kyōgoku,et al.  lnfrared spectra and molecular association of lumiflavin and riboflavin derivatives , 1986 .

[32]  E. Riedle,et al.  Sub-20 fs pulses shaped directly in the UV by an acousto-optic programmable dispersive filter. , 2010, Optics express.

[33]  Herschel Rabitz,et al.  Optimal discrimination of multiple quantum systems: controllability analysis , 2004 .

[34]  P. Dutta,et al.  Resonance CARS line shapes: Excited state parameters for flavin adenine dinucleotide , 1978 .

[35]  H. Rabitz,et al.  Identification of biological microparticles using ultrafast depletion spectroscopy. , 2008, Faraday discussions.

[36]  T. Norris,et al.  Quantitative differentiation of dyes with overlapping one-photon spectra by femtosecond pulse shaping. , 2010, Journal of luminescence.

[37]  N. Lin,et al.  Generation and photosensitization properties of the oxidized radical of riboflavin: a laser flash photolysis study , 1999 .

[38]  L. González,et al.  Deciphering the Reaction Dynamics Underlying Optimal Control Laser Fields , 2003, Science.

[39]  T. Domratcheva,et al.  Ultrafast infrared spectroscopy of riboflavin: dynamics, electronic structure, and vibrational mode analysis. , 2008, The journal of physical chemistry. B.

[40]  Graham R. Fleming,et al.  Fluorescence‐detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase‐locked pulses , 1991 .

[41]  Herschel Rabitz,et al.  Femtosecond laser pulses distinguish bacteria from background urban aerosols , 2005 .

[42]  P. Hegemann,et al.  Quantum yield of triplet formation of riboflavin in aqueous solution and of flavin mononucleotide bound to the LOV1 domain of Phot1 from Chlamydomonas reinhardtii , 2003 .

[43]  Robert M. Whitnell,et al.  Optical control of molecular dynamics: Molecular cannons, reflectrons, and wave‐packet focusers , 1993 .

[44]  Jianshu Cao,et al.  A simple physical picture for quantum control of wave packet localization , 1997 .

[45]  A. Weiner Femtosecond pulse shaping using spatial light modulators , 2000 .

[46]  Herschel Rabitz,et al.  Acousto-optical shaping of ultraviolet femtosecond pulses , 2005 .

[47]  Gustav Gerber,et al.  Femtosecond quantum control of molecular dynamics in the condensed phase. , 2007, Physical chemistry chemical physics : PCCP.

[48]  B V Bronk,et al.  Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity. , 2001, Applied optics.

[49]  S. Grimme,et al.  Quantum Chemical Calculation of Excited States of Flavin-Related Molecules , 2003 .

[50]  Herschel Rabitz,et al.  Publisher’s Note: “Optimal dynamic discrimination of similar quantum systems in the presence of decoherence” [J. Chem. Phys. 124, 024101 (2006)] , 2006 .

[51]  Herschel Rabitz,et al.  Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics , 2006 .

[52]  P. Heelis The photophysical and photochemical properties of flavins (isoalloxazines) , 1982 .

[53]  J. Nishizawa,et al.  Low-frequency vibrational modes of riboflavin and related compounds , 2005 .

[54]  D. Kuroda,et al.  Mapping Excited-State Dynamics by Coherent Control of a Dendrimer’s Photoemission Efficiency , 2009, Science.

[55]  I. Khmelinskii,et al.  Spectroscopy and photophysics of flavin-related compounds: Isoalloxazines , 2005 .

[56]  T. Feurer,et al.  Space-time coupling in femtosecond pulse shaping and its effects on coherent control. , 2009, The Journal of chemical physics.

[57]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[58]  Herschel Rabitz,et al.  Revealing spectral field features and mechanistic insights by control pulse cleaning , 2005 .

[59]  A. Bartelt,et al.  Assuring robustness to noise in optimal quantum control experiments (9 pages) , 2005 .

[60]  Yaron Silberberg,et al.  Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region , 2003 .

[61]  M. Michel-beyerle,et al.  Primary photophysics of the FMN binding LOV2 domain of the plant blue light receptor phototropin of Avena sativa , 2003 .