Similarity Parameter Evolution within a Magnetic Nozzle with Applications to Laboratory Plasmas IEPC-2011-229

The scaling of plasma confinement, acceleration, and detachment from a magnetic nozzle is investigated within the context of present laboratory experiments. A review of the similarity parameters relevant to magnetic nozzle plasmas is provided. A quasi-one-dimensional model of the expanding plasma is then used to determine the evolution of these parameters downstream from the nozzle throat. Two types of plasmas are considered using this model: a cold ion, hot electron plasma with varying degrees of electron cooling; and a hot ion, cold electron plasma with varying degrees of ion temperature anisotropy. Finally, the results of the model are applied to ten different magnetic nozzle experiments to determine their relevant physical regimes.

[1]  L. Block A double layer review , 1978 .

[2]  E. Choueiri,et al.  Plasma detachment and momentum transfer in magnetic nozzles , 2011 .

[3]  J. Kline,et al.  Control of ion temperature anisotropy in a helicon plasma , 1998 .

[4]  A. Arefiev,et al.  Collisionless plasma expansion into vacuum: Two new twists on an old problem , 2008 .

[5]  Kurt F. Schoenberg,et al.  Resistive plasma detachment in nozzle based coaxial thrusters , 1992 .

[6]  R. H. Comfort The magnetic mirror force in plasma fluid Models , 1988 .

[7]  S. Yoshimura,et al.  Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field. , 2010, Physics of plasmas.

[8]  A. Arefiev,et al.  Magnetic nozzle and plasma detachment model for a steady-state flow , 2008 .

[9]  W. Lotz Electron Impact Ionization Cross Sections and Ionization Rate Coefficients for Atoms and Ions , 1967 .

[10]  R. Boswell,et al.  Plasma production using a standing helicon wave , 1970 .

[11]  Robert M. Winglee,et al.  Simulation and laboratory validation of magnetic nozzle effects for the high power helicon thruster , 2007 .

[12]  Francis F. Chen,et al.  Introduction to Plasma Physics and Controlled Fusion , 2015 .

[13]  A. Matras Simulation and laboratory research of permanent magnet DC-machine , 2005 .

[14]  C. Deline,et al.  Plume detachment from a magnetic nozzle , 2009 .

[15]  B. Jorns,et al.  Ion heating with beating electrostatic waves. , 2011, Physical review letters.

[16]  P. Mikellides,et al.  Three-dimensional modeling of magnetic nozzle processes , 2010 .

[17]  Michael D. West,et al.  Testing a Helicon Double Layer Thruster Immersed in a Space-Simulation Chamber , 2008 .

[18]  R. White,et al.  Ion Acceleration in Plasmas with Alfven Waves , 2005 .

[19]  R. Winglee,et al.  Enhanced diamagnetic perturbations and electric currents observed downstream of the high power helicon , 2011 .

[20]  E. Choueiri,et al.  Ion acceleration by beating electrostatic waves: domain of allowed acceleration. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  E. B. Hooper Plasma detachment from a magnetic nozzle , 1991 .

[22]  Donald L. Chubb Fully ionized quasi-one dimensional magnetic nozzle flow , 1971 .

[23]  Kazunori Takahashi,et al.  Operation of a permanent-magnets- expanding plasma source connected to a large-volume diffusion chamber , 2011 .

[24]  O. Okada,et al.  Experimental Study of a Plasma Flow in a Magnetic Nozzle , 1970 .