Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage

[1]  Sonja Brungs,et al.  Fish Inner Ear Otolith Growth Under Real Microgravity (Spaceflight) and Clinorotation , 2016 .

[2]  Ruth Hemmersbach,et al.  Facilities for Simulation of Microgravity in the ESA Ground-Based Facility Programme , 2016 .

[3]  Jens Hauslage,et al.  Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. , 2013, Astrobiology.

[4]  A. Schier,et al.  The role of hair cells, cilia and ciliary motility in otolith formation in the zebrafish otic vesicle , 2012, Development.

[5]  S. Fraser,et al.  Mechanistic basis of otolith formation during teleost inner ear development. , 2011, Developmental cell.

[6]  Ralf Anken,et al.  Clinorotation Increases the Growth of Utricular Otoliths of Developing Cichlid Fish , 2010 .

[7]  S. Fraser,et al.  The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear , 2009, Nature.

[8]  R. Anken,et al.  OMEGAHAB on FOTON M-3: Effect of long-term microgravity on the mineralisation of inner ear otoliths of fish , 2008 .

[9]  R. Anken On the role of the central nervous system in regulating the mineralisation of inner-ear otoliths of fish , 2006, Protoplasma.

[10]  R. Boyle,et al.  Feedback hypothesis and the effects of altered gravity on formation and function of gravireceptors of mollusks and fish. , 2006, Archives Italiennes de Biologie.

[11]  M. Pisam,et al.  First steps of otolith formation of the zebrafish: role of glycogen? , 2002, Cell and Tissue Research.

[12]  B. Riley,et al.  Development of the zebrafish inner ear , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[13]  D. Fekete,et al.  Atlas of the developing inner ear in zebrafish , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[14]  R. Anken,et al.  Effect of hypergravity on the Ca/Sr composition of developing otoliths of larval cichlid fish (Oreochromis mossambicus). , 2001, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[15]  M. Wiederhold,et al.  Otoliths developed in microgravity. , 2000, Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology.

[16]  B. Riley,et al.  Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish. , 2000, Journal of neurobiology.

[17]  R. Anken,et al.  Effect of Altered Gravity on the Neurobiology of Fish , 1999, Naturwissenschaften.

[18]  C. Burress,et al.  Stimulus dependence of the development of the zebrafish (Danio rerio) vestibular system. , 1999, Journal of neurobiology.

[19]  C. Janetopoulos,et al.  A critical period of ear development controlled by distinct populations of ciliated cells in the zebrafish. , 1997, Developmental biology.

[20]  W Briegleb,et al.  Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. , 1992, ASGSB bulletin : publication of the American Society for Gravitational and Space Biology.

[21]  J. Kessler The internal dynamics of slowly rotating biological systems. , 1992, ASGSB bulletin : publication of the American Society for Gravitational and Space Biology.

[22]  Wenyuan Gao,et al.  A critical period for gravitational effects on otolith formation. , 2003, Journal of vestibular research : equilibrium & orientation.

[23]  M. Wiederhold,et al.  Early Development of Gravity-Sensing Organs in Microgravity , 2003 .

[24]  A. Kondrachuk Models of the mechanical sensitivity and growth of otoliths in fish. , 2003, Journal of vestibular research : equilibrium & orientation.

[25]  R. Anken,et al.  Gravitational Zoology: How Animals Use and Cope with Gravity , 2002 .

[26]  K Esseling,et al.  Altered gravitational forces affect the development of the static vestibuloocular reflex in fish (Oreochromis mossambicus). , 2001, Journal of neurobiology.

[27]  R. Anken,et al.  Morphometry of fish inner ear otoliths after development at 3g hypergravity. , 1998, Acta oto-laryngologica.

[28]  H. DE VRIES,et al.  The mechanics of the labyrinth otoliths. , 1951, Acta Oto-Laryngologica.