Strategies to target tumors using nanodelivery systems based on biodegradable polymers, aspects of intellectual property, and market

Abbreviations 2DG 2-Deoxy-D-glucose A10 RNA aptamer A10 2′-fluoropyrimidine RNA aptamer ACTH Adrenocorticotropin hormone CRF Corticotropin releasing factor CS Chitosan DCC N,N′-dicyclohexylcarbodiimide EDC 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride EPR Enhanced permeability and retention FOL Folic acid HER Human epidermal receptors MRI Magnetic resonance imaging NHS N-Hydroxysuccinimide PCL Poly(ε-caprolactone) PDGFR Platelet-derived growth factor receptor PEG Poly(ethylene glycol) PET Positron emission tomography PGA Poly(glycolic acid) PLA Poly(lactic acid) PLGA Poly(lactic-co-glycolic) PLL Poly(L-lysine) PSMA Prostate-specific membrane antigen siRNA Small interfering RNA SPECT Single photon emission computed tomography TPGS D-α-tocopheryl polyethylene glycol succinate VCAM-1 Vascular cell adhesion molecule-1 VEGFR Endothelial growth factor receptors WGA Wheat germ agglutinin

[1]  Robert Langer,et al.  New frontiers in nanotechnology for cancer treatment. , 2008, Urologic oncology.

[2]  Robert Langer,et al.  PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. , 2009, Biomaterials.

[3]  Jing Xu,et al.  Non-condensing polymeric nanoparticles for targeted gene and siRNA delivery. , 2012, International journal of pharmaceutics.

[4]  Robert Langer,et al.  Impact of nanotechnology on drug delivery. , 2009, ACS nano.

[5]  N. Thanh,et al.  Functionalisation of nanoparticles for biomedical applications , 2010 .

[6]  S. Mitragotri,et al.  Adaptive micro and nanoparticles: temporal control over carrier properties to facilitate drug delivery. , 2011, Advanced drug delivery reviews.

[7]  G. Giannelli,et al.  Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells. , 2011, Advanced drug delivery reviews.

[8]  Casa de Oswaldo Cruz De doença desconhecida a problema de saúde pública: o Inca e o controle do Câncer no Brasil , 2007 .

[9]  Gert Storm,et al.  Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release , 2010, Pharmaceutical Research.

[10]  C. O’Driscoll,et al.  Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? , 2011, Biotechnology advances.

[11]  R. Donehower,et al.  Drug therapy : paclitaxel (Taxol) , 1995 .

[12]  R. Marchessault,et al.  Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[13]  Z. Duan,et al.  Nanoparticles: A Promising Modality in the Treatment of Sarcomas , 2011, Pharmaceutical Research.

[14]  Christos Tapeinos,et al.  New approach in synthesis, characterization and release study of pH-sensitive polymeric micelles, based on PLA-Lys-b-PEGm, conjugated with doxorubicin , 2011 .

[15]  E. Frenkel,et al.  Nanoparticles for drug delivery in cancer treatment. , 2008, Urologic oncology.

[16]  I. Vroman,et al.  Biodegradable Polymers , 2009, Materials.

[17]  B. Chabner,et al.  Chemotherapy and the war on cancer , 2005, Nature Reviews Cancer.

[18]  R. Baron,et al.  Tumor αvβ3 Integrin Is a Therapeutic Target for Breast Cancer Bone Metastases , 2007 .

[19]  Yingli An,et al.  Biodegradable polylactide/poly(ethylene glycol)/polylactide triblock copolymer micelles as anticancer drug carriers , 2001 .

[20]  Jason Park,et al.  Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[21]  A. Lowman,et al.  Biodegradable nanoparticles for drug delivery and targeting , 2002 .

[22]  Mina J. Bissell,et al.  Putting tumours in context , 2001, Nature Reviews Cancer.

[23]  Z. Chen Small-molecule delivery by nanoparticles for anticancer therapy. , 2010, Trends in molecular medicine.

[24]  R. P. Andres,et al.  Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. , 2006, Bioconjugate chemistry.

[25]  S. Lippard,et al.  Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin , 1995, Nature.

[26]  P. Lin,et al.  Endothelial cell adhesion molecules and cancer progression. , 2007, Current medicinal chemistry.

[27]  F. Kiessling,et al.  Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[28]  S. Lippard,et al.  New metal complexes as potential therapeutics. , 2003, Current opinion in chemical biology.

[29]  Lin‐Yue Lanry Yung,et al.  Selectivity of folate conjugated polymer micelles against different tumor cells. , 2008, International journal of pharmaceutics.

[30]  Sudhir S Chakravarthi,et al.  Enhanced cellular association of paclitaxel delivered in chitosan-PLGA particles. , 2011, International journal of pharmaceutics.

[31]  Ick Chan Kwon,et al.  Polymeric nanomedicine for cancer therapy , 2008 .

[32]  M. Greaves,et al.  The transferrin receptor , 1982 .

[33]  You Han Bae,et al.  Recent progress in tumor pH targeting nanotechnology. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[34]  Yi Yan Yang,et al.  Multifunctional Core/Shell Nanoparticles Self‐Assembled from pH‐Induced Thermosensitive Polymers for Targeted Intracellular Anticancer Drug Delivery , 2007 .

[35]  M. Dieci,et al.  Enhancing intracellular taxane delivery: current role and perspectives of nanoparticle albumin-bound paclitaxel in the treatment of advanced breast cancer , 2012, Expert opinion on pharmacotherapy.

[36]  Ick Chan Kwon,et al.  The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[37]  R. Baron,et al.  Tumor alphavbeta3 integrin is a therapeutic target for breast cancer bone metastases. , 2007, Cancer research.

[38]  Shaobing Zhou,et al.  Target-specific cellular uptake of folate-decorated biodegradable polymer micelles. , 2011, The journal of physical chemistry. B.

[39]  Jie Pan,et al.  Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. , 2010, Biomaterials.

[40]  A. Bangham,et al.  Diffusion of univalent ions across the lamellae of swollen phospholipids. , 1965, Journal of molecular biology.

[41]  H. Maeda,et al.  The EPR Effect and Polymeric Drugs: A Paradigm Shift for Cancer Chemotherapy in the 21st Century , 2005 .

[42]  Lisa Brannon-Peppas,et al.  Active targeting schemes for nanoparticle systems in cancer therapeutics. , 2008, Advanced drug delivery reviews.

[43]  D. Green,et al.  Armed response: how dying cells influence T‐cell functions , 2011, Immunological reviews.

[44]  Rajesh Singh,et al.  Nanoparticle-based targeted drug delivery. , 2009, Experimental and molecular pathology.

[45]  Yi Yan Yang,et al.  Self-assembled polymer nanostructures for delivery of anticancer therapeutics , 2009 .

[46]  C. F. van der Walle,et al.  Engineering biodegradable polyester particles with specific drug targeting and drug release properties. , 2008, Journal of pharmaceutical sciences.

[47]  Janko Kos,et al.  Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[48]  H. Maeda,et al.  Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[49]  Yuhan Lee,et al.  Self-assembled siRNA-PLGA conjugate micelles for gene silencing. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[50]  Ma Dong,et al.  Bevacizumab plus Irinotecan,Fluorouracil,and Leucovorin for Metastatic Colorectal Cancer , 2006 .

[51]  Z. Werb,et al.  New functions for the matrix metalloproteinases in cancer progression , 2002, Nature Reviews Cancer.

[52]  A. Janorkar,et al.  Poly(lactic acid) modifications , 2010 .

[53]  Xiao-bing Xiong,et al.  Polymeric micelles for drug targeting , 2007, Journal of drug targeting.

[54]  Anil Kumar Bajpai,et al.  Responsive polymers in controlled drug delivery , 2008 .

[55]  Jayanth Panyam,et al.  Polymeric nanoparticles for siRNA delivery and gene silencing. , 2009, International journal of pharmaceutics.

[56]  S. Sahoo,et al.  PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. , 2011, Advanced drug delivery reviews.

[57]  Mauro Ferrari,et al.  nan'o·tech·nol'o·gy n. , 2006, Nature nanotechnology.

[58]  Xiaohua Huang,et al.  Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. , 2006, Cancer letters.

[59]  L. Tanoue,et al.  Erlotinib in Previously Treated Non-Small-Cell Lung Cancer , 2007 .

[60]  Y. Assaraf,et al.  Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. , 2011, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[61]  M. Thanou,et al.  Targeting nanoparticles to cancer. , 2010, Pharmacological research.

[62]  P. Couvreur,et al.  Nanotechnology: Intelligent Design to Treat Complex Disease , 2006, Pharmaceutical Research.

[63]  S. Parveen,et al.  Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[64]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[65]  P. Fong,et al.  PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[66]  R. Mahato,et al.  Extravasation of polymeric nanomedicines across tumor vasculature. , 2011, Advanced drug delivery reviews.

[67]  Sudesh Kumar Yadav,et al.  Biodegradable polymeric nanoparticles based drug delivery systems. , 2010, Colloids and surfaces. B, Biointerfaces.

[68]  W. Saltzman,et al.  Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors. , 2012, Biomaterials.

[69]  S. Wise Nanocarriers as an emerging platform for cancer therapy , 2007 .

[70]  R. Panchagnula,et al.  Localized paclitaxel delivery. , 1999, International journal of pharmaceutics.

[71]  R. B. Campbell,et al.  Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors , 2004, Nature Medicine.

[72]  L. Brannon-Peppas,et al.  Nanoparticle and targeted systems for cancer therapy. , 2004, Advanced drug delivery reviews.

[73]  T. Vermonden,et al.  Functional aliphatic polyesters for biomedical and pharmaceutical applications. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[74]  Guangjun Nie,et al.  Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. , 2011, Biomaterials.

[75]  U. Cavallaro,et al.  The functional role of cell adhesion molecules in tumor angiogenesis. , 2009, Seminars in cancer biology.

[76]  D. Ingber,et al.  Polymeric nanomaterials for islet targeting and immunotherapeutic delivery. , 2012, Nano letters.

[77]  Vladimir Torchilin,et al.  Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[78]  Mark E. Davis,et al.  Clinical Developments in Nanotechnology for Cancer Therapy , 2011, Pharmaceutical Research.

[79]  David F. Moore,et al.  Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy? , 2011, NeuroImage.

[80]  Abu Bakar Munir,et al.  Nanotechnology in healthcare: are existing laws adequate? , 2007, European journal of health law.

[81]  H. Gelderblom,et al.  Fatal outcome of a hypersensitivity reaction to paclitaxel: a critical review of premedication regimens , 2004, British Journal of Cancer.

[82]  E. M. Sussman,et al.  Single-step process to produce surface-functionalized polymeric nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[83]  Nicholas A Peppas,et al.  Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. , 2011, Accounts of chemical research.

[84]  Wolfgang Heller,et al.  Triple-negative breast cancer: therapeutic options. , 2007, The Lancet. Oncology.

[85]  Ji-Xin Cheng,et al.  Hyperthermic effects of gold nanorods on tumor cells. , 2007, Nanomedicine.

[86]  R. B. Campbell,et al.  Conjugation of bevacizumab to cationic liposomes enhances their tumor-targeting potential. , 2010, Nanomedicine.

[87]  C. Sarisozen,et al.  Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. , 2009, International journal of pharmaceutics.

[88]  Bradley E. Layton,et al.  Recent patents in bionanotechnologies: nanolithography, bionanocomposites, cell-based computing and entropy production. , 2008, Recent patents on nanotechnology.

[89]  Norased Nasongkla,et al.  Functionalized Micellar Systems for Cancer Targeted Drug Delivery , 2007, Pharmaceutical Research.

[90]  F Atyabi,et al.  Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents , 2011, International journal of nanomedicine.

[91]  Forrest M Kievit,et al.  Cancer cell invasion: treatment and monitoring opportunities in nanomedicine. , 2011, Advanced drug delivery reviews.

[92]  M. Ferrari,et al.  Cancer Therapy: Cooperative, Nanoparticle‐Enabled Thermal Therapy of Breast Cancer (Adv. Healthcare Mater. 1/2012) , 2012 .

[93]  R. Hynes A reevaluation of integrins as regulators of angiogenesis , 2002, Nature Medicine.

[94]  R. Jain,et al.  Delivering nanomedicine to solid tumors , 2010, Nature Reviews Clinical Oncology.

[95]  Robert Langer,et al.  On firm ground: IP protection of therapeutic nanoparticles , 2010, Nature Biotechnology.

[96]  Wei Shao,et al.  Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. , 2011, Advanced drug delivery reviews.

[97]  Robert Langer,et al.  Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. , 2007, Biomaterials.

[98]  D. Discher,et al.  Shape effects of filaments versus spherical particles in flow and drug delivery. , 2007, Nature nanotechnology.

[99]  J. Gilman,et al.  Nanotechnology , 2001 .

[100]  Kinam Park,et al.  Targeted drug delivery to tumors: myths, reality and possibility. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[101]  Mansoor M. Amiji,et al.  Poly(ethylene glycol)-modified Nanocarriers for Tumor-targeted and Intracellular Delivery , 2007, Pharmaceutical Research.

[102]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[103]  Liangfang Zhang,et al.  Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. , 2012, Biochemical pharmacology.

[104]  C. Rao,et al.  Molecular markers and targets for colorectal cancer prevention , 2008, Acta Pharmacologica Sinica.

[105]  W. Ma,et al.  Novel Agents on the Horizon for Cancer Therapy , 2009, CA: a cancer journal for clinicians.

[106]  S. Haile Cancer metastasis and in vivo dissemination of tissue-dwelling pathogens: extrapolation of mechanisms and exchange of treatment strategies thereof. , 2008, Medical hypotheses.

[107]  L. Ellis,et al.  VEGF-targeted therapy: mechanisms of anti-tumour activity , 2008, Nature Reviews Cancer.

[108]  V. Torchilin,et al.  Micellar Nanocarriers: Pharmaceutical Perspectives , 2006, Pharmaceutical Research.

[109]  Daniel A. Heller,et al.  Treating metastatic cancer with nanotechnology , 2011, Nature Reviews Cancer.

[110]  Pauline Chu,et al.  A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. , 2004, International journal of radiation oncology, biology, physics.

[111]  P. Low,et al.  Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors , 2002, Cancer Immunology, Immunotherapy.

[112]  P. Low,et al.  Folate receptor-targeted drugs for cancer and inflammatory diseases. , 2004, Advanced drug delivery reviews.

[113]  A. Lavasanifar,et al.  Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. , 2011, Advanced drug delivery reviews.

[114]  Sunita Yadav,et al.  Multi-functional nanocarriers to overcome tumor drug resistance. , 2008, Cancer treatment reviews.

[115]  Robert Langer,et al.  Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA–PEG nanoparticles , 2008, Proceedings of the National Academy of Sciences.

[116]  Jayant Khandare,et al.  Polymer-drug conjugates: Progress in polymeric prodrugs , 2006 .

[117]  Jessie L.-S. Au,et al.  Drug Delivery and Transport to Solid Tumors , 2003, Pharmaceutical Research.

[118]  Dennis Fernandez,et al.  Intellectual property rights in nanotechnology , 2002 .

[119]  Yitao Wang,et al.  Polymeric micelles drug delivery system in oncology. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[120]  Peixuan Guo,et al.  Engineering RNA for Targeted siRNA Delivery and Medical Application , 2010, Advanced Drug Delivery Reviews.

[121]  L. Lewis Cancer pharmacotherapy: 21st century 'magic bullets' and changing paradigms. , 2006, British journal of clinical pharmacology.

[122]  G. Kim Cancer nanotechnology: engineering multifunctional nanostructures for targeting tumor cells and vasculatures , 2007 .

[123]  Mauro Ferrari,et al.  Cooperative, Nanoparticle‐Enabled Thermal Therapy of Breast Cancer , 2012, Advanced healthcare materials.

[124]  Lei Yang,et al.  Nanobiomaterials: State of the Art and Future Trends , 2011 .

[125]  S. Parveen,et al.  Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. , 2011, European journal of pharmacology.

[126]  Véronique Préat,et al.  To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[127]  J. Panda,et al.  The present and future of nanotechnology in human health care. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[128]  Ruth Duncan,et al.  Polymer conjugates as anticancer nanomedicines , 2006, Nature Reviews Cancer.

[129]  Wanyi Tai,et al.  Prodrugs for improving tumor targetability and efficiency. , 2011, Advanced drug delivery reviews.

[130]  A. El-Aneed,et al.  An overview of current delivery systems in cancer gene therapy. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[131]  H. Uludaǧ,et al.  Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. , 2009, Biomaterials.

[132]  A J Thomson,et al.  The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum(IV) complexes. , 1967, The Journal of biological chemistry.

[133]  Yueshan Huang,et al.  Improved therapeutic effect of folate-decorated PLGA-PEG nanoparticles for endometrial carcinoma. , 2011, Bioorganic & medicinal chemistry.

[134]  D. Richardson,et al.  Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. , 2009, Biochimica et biophysica acta.

[135]  E K Rowinsky,et al.  Paclitaxel (taxol) , 1995, The New England journal of medicine.

[136]  Saroja Ramanujan,et al.  Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. , 2002, Biophysical journal.

[137]  Jie Pan,et al.  Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles. , 2008, Biomaterials.

[138]  L. Teixeira,et al.  De doença desconhecida a problema de saúde pública: o INCA e o controle do câncer no Brasil , 2007 .

[139]  J. Vishwanatha,et al.  Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy , 2011, Nanotechnology.

[140]  Gustavo Helguera,et al.  The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. , 2006, Clinical immunology.

[141]  Lesley Seymour,et al.  Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. , 2003, The Lancet. Oncology.

[142]  Dong Wang,et al.  Cellular processing of platinum anticancer drugs , 2005, Nature Reviews Drug Discovery.

[143]  Chunxiao Wang,et al.  Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells. , 2010, International journal of pharmaceutics.

[144]  H. Mansour,et al.  Materials for Pharmaceutical Dosage Forms: Molecular Pharmaceutics and Controlled Release Drug Delivery Aspects , 2010, International journal of molecular sciences.

[145]  Mark E. Davis,et al.  Nanoparticle therapeutics: an emerging treatment modality for cancer , 2008, Nature Reviews Drug Discovery.

[146]  Jeffrey I. Zink,et al.  Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery , 2010, BiOS.