Explicit constructions of universal R-trees and asymptotic geometry of hyperbolic spaces
暂无分享,去创建一个
[1] M. Gromov. Groups of polynomial growth and expanding maps , 1981 .
[2] An asymptotic subcone of the Lobachevskii plane as a space of functions , 1997 .
[3] Asymptotic Cones of Finitely Generated Groups , 2000 .
[4] A NON-QUASICONVEXITY EMBEDDING THEOREM FOR HYPERBOLIC GROUPS , 1997, math/9704203.
[5] P. Papasoglu. On the asymptotic cone of groups satisfying a quadratic isoperimetric inequality , 1996 .
[6] Graham A. Niblo,et al. Asymptotic invariants of infinite groups , 1993 .
[7] Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings , 1997 .
[8] ℝ-Trees in Topology, Geometry, and Group Theory , 2001 .
[9] J. Nikiel,et al. Universal Spaces for R-Trees , 1992 .
[10] É. Ghys,et al. Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .
[11] C. Druţu. Réseaux des groupes semisimples et invariants de quasi-isométrie , 1996 .
[12] M. Kapovich,et al. On asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds , 1995 .
[13] A. Beardon. The Geometry of Discrete Groups , 1995 .
[14] John G. Ratcliffe,et al. Geometry of Discrete Groups , 2019, Foundations of Hyperbolic Manifolds.
[15] J. Nikiel. Topologies on Pseudo Trees and Applications , 1989 .
[16] Alex Wilkie,et al. Gromov's theorem on groups of polynomial growth and elementary logic , 1984 .