Toward a fully relativistic theory of quantum information

Information theory is a statistical theory dealing with the relative state of detectors and physical systems. Because of this physicality of information, the classical framework of Shannon needs to be extended to deal with quantum detectors, perhaps moving at relativistic speeds, or even within curved space-time. Considerable progress toward such a theory has been achieved in the last fifteen years, while much is still not understood. This review recapitulates some milestones along this road, and speculates about future ones.

[1]  H. Ott Lorentz-Transformation der Wärme und der Temperatur , 1963 .

[2]  Masahito Ueda,et al.  Einstein-Podolsky-Rosen correlation in a gravitational field , 2003, quant-ph/0307114.

[3]  C. Adami,et al.  Negative entropy and information in quantum mechanics , 1995, quant-ph/9512022.

[4]  Christoph Adami,et al.  Entangled light in moving frames , 2003 .

[5]  Jennifer R. Glick,et al.  Quantum Mechanics of Consecutive Measurements , 2009, 0911.1142.

[6]  Paul M. Alsing,et al.  Teleportation with a uniformly accelerated partner , 2003, SPIE International Symposium on Fluctuations and Noise.

[7]  P. Davies Scalar production in Schwarzschild and Rindler metrics , 1975 .

[8]  W. Mayer,et al.  Enzyklopädie der mathematischen, Wissenschaften , 1929 .

[9]  C. Adami,et al.  VON NEUMANN CAPACITY OF NOISY QUANTUM CHANNELS , 1996 .

[10]  M. Planck Zur Dynamik bewegter Systeme , 1908 .

[11]  Gregory J. Chaitin,et al.  The Limits of Mathematics , 1995, J. Univers. Comput. Sci..

[12]  Gerard J. Milburn,et al.  On entanglement and Lorentz transformations , 2002, Quantum Inf. Comput..

[13]  Cristian S. Calude Information and Randomness , 1994, Monographs in Theoretical Computer Science An EATCS Series.

[14]  Stephen W. Hawking Zeta function regularization of path integrals in curved spacetime , 1977 .

[15]  R. Mann,et al.  Alice falls into a black hole: entanglement in noninertial frames. , 2004, Physical review letters.

[16]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[17]  J. Preskill Do Black Holes Destroy Information , 1992, hep-th/9209058.

[18]  David T. Wilkinson,et al.  Comment on the Anisotropy of the Primeval Fireball , 1968 .

[19]  A. Church Review: A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem , 1937 .

[20]  G J Milburn,et al.  Teleportation with a uniformly accelerated partner. , 2003, Physical review letters.

[21]  M. Tribus,et al.  Energy and information , 1971 .

[22]  Daniel R. Terno,et al.  Quantum Information and Relativity Theory , 2002, quant-ph/0212023.

[23]  S. Fulling,et al.  Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time , 1973 .

[24]  Christoph Adami,et al.  What Information Theory Can Tell Us About Quantum Reality , 1998, QCQC.

[25]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[26]  Keith Jarett,et al.  Asymmetries in relativistic information flow , 1981, IEEE Trans. Inf. Theory.

[27]  Laying the ghost of the relativistic temperature transformation , 1996, physics/9610016.

[28]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[29]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[30]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[31]  Christoph Adami,et al.  Quantum entanglement of moving bodies. , 2002, Physical review letters.

[32]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[33]  Stephen W. Hawking,et al.  Particle Creation by Black Holes , 1993, Resonance.

[34]  Asher Peres,et al.  Relativistic doppler effect in quantum communication , 2003 .

[35]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[36]  G. Basharin On a Statistical Estimate for the Entropy of a Sequence of Independent Random Variables , 1959 .

[37]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[38]  P. Alsing,et al.  Entanglement of Dirac fields in noninertial frames , 2006, quant-ph/0603269.

[39]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[40]  Masanori Ohya,et al.  On compound state and mutual information in quantum information theory , 1983, IEEE Trans. Inf. Theory.

[41]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[42]  G. Milburn,et al.  Lorentz Invariance of Entanglement , 2002, quant-ph/0203051.

[43]  B. Julsgaard,et al.  Experimental long-lived entanglement of two macroscopic objects , 2001, Nature.

[44]  H. Arzeliès Transformation relativiste de la température et de quelques autres grandeurs thermodynamiques , 1965 .

[45]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[46]  F. Wilczek,et al.  Geometric and renormalized entropy in conformal field theory , 1994, hep-th/9403108.

[47]  W. Pauli Grundlagen der speziellen Relativitätstheorie , 1921 .

[48]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[49]  W. Zurek Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse? , 1981 .

[50]  J. Preskill,et al.  Causal and localizable quantum operations , 2001, quant-ph/0102043.

[51]  Chris Adami,et al.  Information theory of quantum entanglement and measurement , 1998 .

[52]  Karl von Meyenn Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen , 1990 .

[53]  Asher Peres,et al.  Quantum entropy and special relativity. , 2002, Physical review letters.

[54]  R. Aldrovandi,et al.  On the riddle of the moving thermometers , 1992 .

[55]  W. Unruh Notes on black-hole evaporation , 1976 .

[56]  A. Wehrl General properties of entropy , 1978 .

[57]  J. Neumann Thermodynamik quantenmechanischer Gesamtheiten , 1927 .

[58]  R. Landauer Information is physical , 1991 .

[59]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[60]  C. Adami,et al.  Quantum extension of conditional probability , 1999 .

[61]  C. Adami,et al.  Black Holes Conserve Information in Curved-Space Quantum Field Theory , 2008 .

[62]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .