Toward a fully relativistic theory of quantum information
暂无分享,去创建一个
[1] H. Ott. Lorentz-Transformation der Wärme und der Temperatur , 1963 .
[2] Masahito Ueda,et al. Einstein-Podolsky-Rosen correlation in a gravitational field , 2003, quant-ph/0307114.
[3] C. Adami,et al. Negative entropy and information in quantum mechanics , 1995, quant-ph/9512022.
[4] Christoph Adami,et al. Entangled light in moving frames , 2003 .
[5] Jennifer R. Glick,et al. Quantum Mechanics of Consecutive Measurements , 2009, 0911.1142.
[6] Paul M. Alsing,et al. Teleportation with a uniformly accelerated partner , 2003, SPIE International Symposium on Fluctuations and Noise.
[7] P. Davies. Scalar production in Schwarzschild and Rindler metrics , 1975 .
[8] W. Mayer,et al. Enzyklopädie der mathematischen, Wissenschaften , 1929 .
[9] C. Adami,et al. VON NEUMANN CAPACITY OF NOISY QUANTUM CHANNELS , 1996 .
[10] M. Planck. Zur Dynamik bewegter Systeme , 1908 .
[11] Gregory J. Chaitin,et al. The Limits of Mathematics , 1995, J. Univers. Comput. Sci..
[12] Gerard J. Milburn,et al. On entanglement and Lorentz transformations , 2002, Quantum Inf. Comput..
[13] Cristian S. Calude. Information and Randomness , 1994, Monographs in Theoretical Computer Science An EATCS Series.
[14] Stephen W. Hawking. Zeta function regularization of path integrals in curved spacetime , 1977 .
[15] R. Mann,et al. Alice falls into a black hole: entanglement in noninertial frames. , 2004, Physical review letters.
[16] Martin B. Plenio,et al. An introduction to entanglement measures , 2005, Quantum Inf. Comput..
[17] J. Preskill. Do Black Holes Destroy Information , 1992, hep-th/9209058.
[18] David T. Wilkinson,et al. Comment on the Anisotropy of the Primeval Fireball , 1968 .
[19] A. Church. Review: A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem , 1937 .
[20] G J Milburn,et al. Teleportation with a uniformly accelerated partner. , 2003, Physical review letters.
[21] M. Tribus,et al. Energy and information , 1971 .
[22] Daniel R. Terno,et al. Quantum Information and Relativity Theory , 2002, quant-ph/0212023.
[23] S. Fulling,et al. Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time , 1973 .
[24] Christoph Adami,et al. What Information Theory Can Tell Us About Quantum Reality , 1998, QCQC.
[25] Andreas Winter,et al. Partial quantum information , 2005, Nature.
[26] Keith Jarett,et al. Asymmetries in relativistic information flow , 1981, IEEE Trans. Inf. Theory.
[27] Laying the ghost of the relativistic temperature transformation , 1996, physics/9610016.
[28] Charles H. Bennett,et al. Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[29] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[30] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[31] Christoph Adami,et al. Quantum entanglement of moving bodies. , 2002, Physical review letters.
[32] W. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.
[33] Stephen W. Hawking,et al. Particle Creation by Black Holes , 1993, Resonance.
[34] Asher Peres,et al. Relativistic doppler effect in quantum communication , 2003 .
[35] Peter W. Shor,et al. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.
[36] G. Basharin. On a Statistical Estimate for the Entropy of a Sequence of Independent Random Variables , 1959 .
[37] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[38] P. Alsing,et al. Entanglement of Dirac fields in noninertial frames , 2006, quant-ph/0603269.
[39] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[40] Masanori Ohya,et al. On compound state and mutual information in quantum information theory , 1983, IEEE Trans. Inf. Theory.
[41] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[42] G. Milburn,et al. Lorentz Invariance of Entanglement , 2002, quant-ph/0203051.
[43] B. Julsgaard,et al. Experimental long-lived entanglement of two macroscopic objects , 2001, Nature.
[44] H. Arzeliès. Transformation relativiste de la température et de quelques autres grandeurs thermodynamiques , 1965 .
[45] Charles H. Bennett,et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.
[46] F. Wilczek,et al. Geometric and renormalized entropy in conformal field theory , 1994, hep-th/9403108.
[47] W. Pauli. Grundlagen der speziellen Relativitätstheorie , 1921 .
[48] W. Zurek. Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.
[49] W. Zurek. Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse? , 1981 .
[50] J. Preskill,et al. Causal and localizable quantum operations , 2001, quant-ph/0102043.
[51] Chris Adami,et al. Information theory of quantum entanglement and measurement , 1998 .
[52] Karl von Meyenn. Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen , 1990 .
[53] Asher Peres,et al. Quantum entropy and special relativity. , 2002, Physical review letters.
[54] R. Aldrovandi,et al. On the riddle of the moving thermometers , 1992 .
[55] W. Unruh. Notes on black-hole evaporation , 1976 .
[56] A. Wehrl. General properties of entropy , 1978 .
[57] J. Neumann. Thermodynamik quantenmechanischer Gesamtheiten , 1927 .
[58] R. Landauer. Information is physical , 1991 .
[59] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[60] C. Adami,et al. Quantum extension of conditional probability , 1999 .
[61] C. Adami,et al. Black Holes Conserve Information in Curved-Space Quantum Field Theory , 2008 .
[62] J. Neumann. Mathematische grundlagen der Quantenmechanik , 1935 .