A large-scale simulation model to assess karstic groundwater recharge over Europe and the Mediterranean

Abstract. Karst develops through the dissolution of carbonate rock and is a major source of groundwater contributing up to half of the total drinking water supply in some European countries. Previous approaches to model future water availability in Europe are either too-small scale or do not incorporate karst processes, i.e. preferential flow paths. This study presents the first simulations of groundwater recharge in all karst regions in Europe with a parsimonious karst hydrology model. A novel parameter confinement strategy combines a priori information with recharge-related observations (actual evapotranspiration and soil moisture) at locations across Europe while explicitly identifying uncertainty in the model parameters. Europe's karst regions are divided into four typical karst landscapes (humid, mountain, Mediterranean and desert) by cluster analysis and recharge is simulated from 2002 to 2012 for each karst landscape. Mean annual recharge ranges from negligible in deserts to > 1 m a−1 in humid regions. The majority of recharge rates range from 20 to 50% of precipitation and are sensitive to subannual climate variability. Simulation results are consistent with independent observations of mean annual recharge and significantly better than other global hydrology models that do not consider karst processes (PCR-GLOBWB, WaterGAP). Global hydrology models systematically under-estimate karst recharge implying that they over-estimate actual evapotranspiration and surface runoff. Karst water budgets and thus information to support management decisions regarding drinking water supply and flood risk are significantly improved by our model.

[1]  Martin Sauter,et al.  Simulation of flow processes in a large scale karst system with an integrated catchment model (Mike She) – Identification of relevant parameters influencing spring discharge , 2012 .

[2]  P. Williams The role of the epikarst in karst and cave hydrogeology: a review , 2008 .

[3]  B. Andreo,et al.  Methodology for groundwater recharge assessment in carbonate aquifers: application to pilot sites in southern Spain , 2008 .

[4]  W. Durner Groundwater recharge: A guide to understanding and estimating natural recharge , 1992 .

[5]  M. Barbieri,et al.  Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy) , 2005 .

[6]  Alon Rimmer,et al.  Simplified Conceptual Structures and Analytical Solutions for Groundwater Discharge Using Reservoir Equations , 2012 .

[7]  Vazken Andréassian,et al.  How can rainfall‐runoff models handle intercatchment groundwater flows? Theoretical study based on 1040 French catchments , 2007 .

[8]  Ahmad H. El-Hajj,et al.  Karst groundwater resources in the countries of eastern Mediterranean: the example of Lebanon , 2008 .

[9]  P. Alpert,et al.  Climate Change Impacts on Jordan River Flow: Downscaling Application from a Regional Climate Model , 2010 .

[10]  Gordon E. Grant,et al.  Groundwater dynamics mediate low‐flow response to global warming in snow‐dominated alpine regions , 2009 .

[11]  Piotr Maloszewski,et al.  Identifying the flow systems in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modelling of environmental 18O and 3H isotopes , 2002 .

[12]  P. Williams The role of the subcutaneous zone in karst hydrology , 1983 .

[13]  B. Andreo,et al.  Relative importance of the saturated and the unsaturated zones in the hydrogeological functioning of karst aquifers: The case of Alta Cadena (Southern Spain) , 2011 .

[14]  T. Mathevet,et al.  Confronting surface‐ and groundwater balances on the La Rochefoucauld‐Touvre karstic system (Charente, France) , 2008 .

[15]  P. Döll,et al.  A global hydrological model for deriving water availability indicators: model tuning and validation , 2003 .

[16]  C. Tebaldi,et al.  Long-term Climate Change: Projections, Commitments and Irreversibility , 2013 .

[17]  B. Scanlon,et al.  Choosing appropriate techniques for quantifying groundwater recharge , 2002 .

[18]  M. Bierkens,et al.  Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources , 2013 .

[19]  P. Morefield,et al.  Hydrologic landscape classification evaluates streamflow vulnerability to climate change in Oregon, USA , 2014 .

[20]  Ranz,et al.  World Map of the Köppen-Geiger climate classification updated — Source link , 2006 .

[21]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[22]  M. Budyko,et al.  Climate and life , 1975 .

[23]  L. Garrelly,et al.  Relations between the structure of storage and the transport of chemical compounds in karstic aquifers , 1997 .

[24]  S. Leibowitz,et al.  Oregon Hydrologic Landscapes: A Classification Framework 1 , 2013 .

[25]  M. Sivapalan,et al.  Catchment classification: Empirical analysis of hydrologic similarity based on catchment function in the eastern USA , 2011 .

[26]  Thomas C. Winter,et al.  THE CONCEPT OF HYDROLOGIC LANDSCAPES 1 , 2001 .

[27]  F. Einsiedl Flow system dynamics and water storage of a fissured-porous karst aquifer characterized by artificial and environmental tracers , 2005 .

[28]  V. Allocca,et al.  Estimating annual groundwater recharge coefficient for karst aquifers of the southern Apennines (Italy) , 2014 .

[29]  A. Pulido-Bosch,et al.  Relative Importance of Baseflow and Quickflow from Hydrographs of Karst Spring , 1994 .

[30]  Peter Huggenberger,et al.  Intrinsic vulnerability assessment in karst areas: A numerical modeling approach , 2008 .

[31]  Gerrit Lohmann,et al.  Regional Climate Projections. , 2010 .

[32]  T. Holmes,et al.  Global land-surface evaporation estimated from satellite-based observations , 2010 .

[33]  P. Döll,et al.  Global-scale modeling of groundwater recharge , 2008 .

[34]  C. Prudhomme,et al.  Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections , 2011 .

[35]  J. Perrin,et al.  Epikarst storage in a karst aquifer: a conceptual model based on isotopic data, Milandre test site, Switzerland , 2003 .

[36]  O. Bonacci Analysis of the maximum discharge of karst springs , 2001 .

[37]  Michel Bakalowicz,et al.  Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France) , 2007 .

[38]  David J. Ketchen,et al.  THE APPLICATION OF CLUSTER ANALYSIS IN STRATEGIC MANAGEMENT RESEARCH: AN ANALYSIS AND CRITIQUE , 1996 .

[39]  Ioannis K. Tsanis,et al.  Impact of climate change on water resources status: A case study for Crete Island, Greece , 2013 .

[40]  D. Ford,et al.  Karst Hydrogeology and Geomorphology: Ford/Karst Hydrogeology and Geomorphology , 2007 .

[41]  Nigel W. Arnell,et al.  Relative effects of multi-decadal climatic variability and changes in the mean and variability of climate due to global warming: future streamflows in Britain , 2003 .

[42]  M. Weiler,et al.  Progress in the hydrologic simulation of time variant recharge areas of karst systems – exemplified at a karst spring in Southern Spain , 2013 .

[43]  M. Bierkens,et al.  Global depletion of groundwater resources , 2010 .

[44]  Thorsten Wagener,et al.  Karst water resources in a changing world: Review of hydrological modeling approaches , 2014 .

[45]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[46]  K. Beven,et al.  Comment on “Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water” by Eric F. Wood et al. , 2012 .

[47]  Luc Aquilina,et al.  Water storage and transfer in the epikarst of karstic systems during high flow periods , 2006 .

[48]  Vincent Guinot,et al.  Modelling the behaviour of a karst system catchment using non-linear hysteretic conceptual model , 2011 .

[49]  Jens Hartmann,et al.  A glimpse beneath earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity , 2014 .

[50]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[51]  M. Mansour,et al.  Evaluation of distributed recharge in an upland semi-arid karst system: the West Bank Mountain Aquifer, Middle East , 2008 .

[52]  M. Sivapalan,et al.  Functional model of water balance variability at the catchment scale: 1. Evidence of hydrologic similarity and space‐time symmetry , 2011 .

[53]  S. Wellings Recharge of the Upper Chalk aquifer at a site in Hampshire, England: 2. Solute movement , 1984 .

[54]  B. Rudolf,et al.  World Map of the Köppen-Geiger climate classification updated , 2006 .

[55]  Thorsten Wagener,et al.  Process-based karst modelling to relate hydrodynamic and hydrochemical characteristics to system properties , 2013 .

[56]  D. Ford,et al.  Karst Hydrogeology and Geomorphology , 2007 .

[57]  E. S. Lee,et al.  A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers , 2001 .

[58]  A. V. Vecchia,et al.  Global pattern of trends in streamflow and water availability in a changing climate , 2005, Nature.

[59]  I. Simmers,et al.  Groundwater recharge: an overview of processes and challenges , 2002 .

[60]  Y. Goldreich The climate of Israel , 2003 .

[61]  C. Leibundgut,et al.  Runoff generation from successive simulated rainfalls on a rocky, semi‐arid, Mediterranean hillslope , 2003 .

[62]  Thorsten Wagener,et al.  Modeling spatiotemporal impacts of hydroclimatic extremes on groundwater recharge at a Mediterranean karst aquifer , 2014 .

[63]  A. Dai Increasing drought under global warming in observations and models , 2013 .

[64]  Z. Hatipoglu-Bagci,et al.  Characteristics of karst springs in Aydıncık (Mersin, Turkey), based on recession curves and hydrochemical and isotopic parameters , 2014 .

[65]  M. Meybeck,et al.  Mountains of the world, water towers for humanity: Typology, mapping, and global significance , 2007 .

[66]  H. Hoetzl Groundwater recharge in an arid karst area (Saudi Arabia) , 1995 .

[67]  The water budget myth revisited: why hydrogeologists model. , 2002, Ground water.

[68]  M. Weiler,et al.  A new approach to model the spatial and temporal variability of recharge to karst aquifers , 2012 .

[69]  S. Foster Groundwater recharge and pollution vulnerability of British aquifers: a critical overview , 1998, Geological Society, London, Special Publications.

[70]  Damir Jukić,et al.  Estimating parameters of groundwater recharge model in frequency domain: Karst springs Jadro and Žrnovnica , 2008 .

[71]  V. Allocca,et al.  Coupled decadal variability of the North Atlantic Oscillation, regional rainfall and karst spring discharges in the Campania region (southern Italy) , 2011 .

[72]  A. Robock,et al.  The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements , 2011 .

[73]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[74]  G. Seber Multivariate observations / G.A.F. Seber , 1983 .

[75]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[76]  M. Ek,et al.  Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water , 2011 .

[77]  L. Király Karstification and groundwater flow , 2003 .

[78]  V. Conrad The Climate of the Mediterranean Region , 1943 .

[79]  M. Holland,et al.  Near-term climate change:Projections and predictability , 2014 .

[80]  Harun Aydin,et al.  Characterization and conceptualization of a relict Karst aquifer (Bilecik, Turkey) , 2013 .

[81]  S. Kanae,et al.  Global flood risk under climate change , 2013 .

[82]  L. V. Beek,et al.  Water balance of global aquifers revealed by groundwater footprint , 2012, Nature.

[83]  M. Litvak,et al.  Water‐storage capacity controls energy partitioning and water use in karst ecosystems on the Edwards Plateau, Texas , 2014 .

[84]  R. Spear Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis , 1980 .

[85]  M. Bakalowicz Karst groundwater: a challenge for new resources , 2005 .

[86]  Peter A. Troch,et al.  The future of hydrology: An evolving science for a changing world , 2010 .

[87]  James A. Kuiper,et al.  Modeling complex flow in a karst aquifer , 2006 .