Nonparametric Maximum Entropy Probability Density Estimation

Given a sample of independent and identically distributed random variables, a novel nonparametric maximum entropy method is presented to estimate the underlying continuous univariate probability density function (pdf). Estimates are found by maximizing a log-likelihood function based on single order statistics after transforming through a sequence of trial cumulative distribution functions that iteratively improve using a Monte Carlo random search method. Improvement is quantified by assessing the random variables against the statistical properties of sampled uniform random data. Quality is determined using an empirically derived scoring function that is scaled to be sample size invariant. The scoring function identifies atypical fluctuations, for which threshold values are set to define objective criteria that prevent under-fitting as trial iterations continue to improve the model pdf, and, stopping the iteration cycle before over-fitting occurs. No prior knowledge about the data is required. An ensemble of pdf models is used to reflect uncertainties due to statistical fluctuations in random samples, and the quality of the estimates is visualized using scaled residual quantile plots that show deviations from size-invariant statistics. These considerations result in a tractable method that holistically employs key principles of random variables and their statistical properties combined with employing orthogonal basis functions and data-driven adaptive algorithms. Benchmark tests show that the pdf estimates readily converge to the true pdf as sample size increases. Robust results are demonstrated on several test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails and singularities in the pdf, suggesting a generally applicable approach for statistical inference.

[1]  Furno Marilena,et al.  Quantile Regression , 2018, Wiley Series in Probability and Statistics.

[2]  Rachid Saadane,et al.  Low Complexity Algorithm for Probability Density Estimation Applied in Big Data Analysis , 2014 .

[3]  D. Datta Wavelet Analysis Based Estimation of Probability Density function of Wind Data , 2014 .

[4]  Parameswaran Ramachandran,et al.  Adaptive bandwidth kernel density estimation for next-generation sequencing data , 2013, BMC Proceedings.

[5]  Lasse Holmström,et al.  A scale space multiresolution method for extraction of time series features , 2013 .

[6]  Kingshuk Ghosh,et al.  Nonadditive entropies yield probability distributions with biases not warranted by the data. , 2013, Physical review letters.

[7]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[8]  Peter Malec,et al.  Nonparametric Kernel Density Estimation Near the Boundary , 2013, Comput. Stat. Data Anal..

[9]  Paul Embrechts,et al.  A note on generalized inverses , 2013, Math. Methods Oper. Res..

[10]  E. Parzen,et al.  From data to constraints , 2012 .

[11]  Y. Rinott,et al.  Best Invariant and Minimax Estimation of Quantiles in Finite Populations. , 2011, Journal of statistical planning and inference.

[12]  R. Dawson How Significant is a Boxplot Outlier? , 2011 .

[13]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[14]  Alberto Bernacchia,et al.  Self‐consistent method for density estimation , 2009, 0908.3856.

[15]  Xibing Li,et al.  A method for fitting probability distributions to engineering properties of rock masses using Legendre orthogonal polynomials , 2009 .

[16]  Jin Zhang,et al.  Robust normal reference bandwidth for kernel density estimation , 2009 .

[17]  T. Jaki,et al.  Maximum Kernel Likelihood Estimation , 2008 .

[18]  Terrence S. Furey,et al.  F-Seq: a feature density estimator for high-throughput sequence tags , 2008, Bioinform..

[19]  DIANE L. EVANS,et al.  The Distribution of the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling Test Statistics for Exponential Populations with Estimated Parameters , 2008, Commun. Stat. Simul. Comput..

[20]  Chong Gu Smoothing noisy data via regularization: statistical perspectives , 2008 .

[21]  Miroslav Dudík,et al.  Maximum Entropy Density Estimation with Generalized Regularization and an Application to Species Distribution Modeling , 2007, J. Mach. Learn. Res..

[22]  Stergios B. Fotopoulos,et al.  All of Nonparametric Statistics , 2007, Technometrics.

[23]  Abdel Hannachi,et al.  Quantifying changes and their uncertainties in probability distribution of climate variables using robust statistics , 2006 .

[24]  J. Hague Determining the phonon density of states from specific heat measurements via maximum entropy methods , 2005 .

[25]  A. K. Bhattacharya,et al.  Maximum entropy and the problem of moments: a stable algorithm. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  W. R. Schucany Kernel Smoothers: An Overview of Curve Estimators for the First Graduate Course in Nonparametric Statistics , 2004 .

[27]  Miroslav Dudík,et al.  Performance Guarantees for Regularized Maximum Entropy Density Estimation , 2004, COLT.

[28]  C. Fiorio Confidence Intervals for Kernel Density Estimation , 2004 .

[29]  Allan D. Woodbury,et al.  A FORTRAN program to produce minimum relative entropy distributions , 2004, Comput. Geosci..

[30]  Chao He,et al.  Probability Density Estimation from Optimally Condensed Data Samples , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  I. J. Myung,et al.  Tutorial on maximum likelihood estimation , 2003 .

[32]  Jotun Hein,et al.  Statistical Methods in Bioinformatics: An Introduction , 2002 .

[33]  V. Torczon,et al.  Direct search methods: then and now , 2000 .

[34]  Song-xi Chen,et al.  Probability Density Function Estimation Using Gamma Kernels , 2000 .

[35]  Aldo Tagliani,et al.  Hausdorff moment problem and maximum entropy: A unified approach , 1999, Appl. Math. Comput..

[36]  B. Presnell,et al.  Density Estimation under Constraints , 1999 .

[37]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[38]  J. N. Kapur Maximum-entropy models in science and engineering , 1992 .

[39]  I. Turek A maximum-entropy approach to the density of states within the recursion method , 1988 .

[40]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[41]  F. O’Sullivan A Statistical Perspective on Ill-posed Inverse Problems , 1986 .

[42]  Ronald W. Butler,et al.  Nonparametric Interval and Point Prediction Using Data Trimmed by a Grubbs-Type Outlier Rule , 1982 .

[43]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[44]  V. Kreinovič,et al.  The maximum entropy method , 1979, Nature.

[45]  H. Leon Harter,et al.  The Use of Order Statistics in Estimation , 1968, Oper. Res..

[46]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[47]  Sarah Kuester,et al.  Smoothing Techniques With Implementation In S , 2016 .

[48]  Shoufang Xu,et al.  Limit behaviors of the deviation between the sample quantiles and the quantile , 2011 .

[49]  I. Sebastian Buhai Quantile Regression: Overview and Selected Applications ∗ , 2004 .

[50]  S. Sheather Density Estimation , 2004 .

[51]  Don H. Johnson,et al.  the Kullback-Leibler distance , 2001 .

[52]  J. Marron,et al.  SCALE SPACE VIEW OF CURVE ESTIMATION , 2000 .

[53]  Julie A. Letellier Rates of convergence for an estimator of a density function based on jacobi polynomials , 1997 .

[54]  Douglas J. Miller,et al.  Maximum entropy econometrics: robust estimation with limited data , 1996 .

[55]  A. Nobel Histogram regression estimation using data-dependent partitions , 1996 .

[56]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[57]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.