Uranium reduction and isotopic fractionation in reducing sediments: Insights from reactive transport modeling

[1]  K. Maher,et al.  A model for kinetic isotope fractionation during redox reactions , 2020 .

[2]  Shaun T. Brown,et al.  Uranium isotope fractionation by abiotic reductive precipitation , 2018, Proceedings of the National Academy of Sciences.

[3]  A. Anbar,et al.  Congruent Permian-Triassic δ238U records at Panthalassic and Tethyan sites: Confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy , 2018 .

[4]  S. Crowe,et al.  Chromium isotope fractionation in ferruginous sediments , 2018 .

[5]  M. Marguš,et al.  Coupled Mo-U abundances and isotopes in a small marine euxinic basin: Constraints on processes in euxinic basins , 2018 .

[6]  J. Gardiner,et al.  Geochemical and multi-isotopic ( 87 Sr/ 86 Sr, 143 Nd/ 144 Nd, 238 U/ 235 U) perspectives of sediment sources, depositional conditions, and diagenesis of the Marcellus Shale, Appalachian Basin, USA , 2018 .

[7]  O. Proux,et al.  Geochemical control on the reduction of U(VI) to mononuclear U(IV) species in lacustrine sediments , 2018 .

[8]  N. Planavsky,et al.  A new estimate of detrital redox-sensitive metal concentrations and variability in fluxes to marine sediments , 2017 .

[9]  B. Kendall,et al.  Uranium isotope compositions of mid-Proterozoic black shales: Evidence for an episode of increased ocean oxygenation at 1.36 Ga and evaluation of the effect of post-depositional hydrothermal fluid flow , 2017 .

[10]  K. Maher,et al.  Uranium isotope evidence for an expansion of marine anoxia during the end‐Triassic extinction , 2017 .

[11]  F. Macdonald,et al.  Tracking the onset of Phanerozoic-style redox-sensitive trace metal enrichments: New results from basal Ediacaran post-glacial strata in NW Canada , 2017 .

[12]  B. Kendall,et al.  Reconstruction of Local and Global Marine Redox Conditions During Deposition of Late Ordovician and Early Silurian Organic-Rich Mudrocks in the Siljan Ring District, Central Sweden , 2017 .

[13]  M. Rijkenberg,et al.  Uranium stable isotope fractionation in the Black Sea: Modern calibration of the 238 U/ 235 U paleo-redox proxy , 2017 .

[14]  A. Anbar,et al.  Global-ocean redox variation during the middle-late Permian through Early Triassic based on uranium isotope and Th/U trends of marine carbonates , 2017 .

[15]  K. Maher,et al.  Uranium isotope evidence for temporary ocean oxygenation in the aftermath of the Sturtian Snowball Earth , 2017 .

[16]  J. Bargar,et al.  Uranium(IV) adsorption by natural organic matter in anoxic sediments , 2017, Proceedings of the National Academy of Sciences.

[17]  T. Lenton,et al.  A model for microbial phosphorus cycling in bioturbated marine sediments: Significance for phosphorus burial in the early Paleozoic , 2016 .

[18]  N. Planavsky,et al.  Oceanic oxygenation events in the anoxic Ediacaran ocean , 2016, Geobiology.

[19]  G. Wilson,et al.  Trace metal cycling and ^(238)U/^(235)U in New Zealand’s fjords: Implications for reconstructing global paleoredox conditions in organic-rich sediments , 2016 .

[20]  L. Kump,et al.  Marine anoxia and delayed Earth system recovery after the end-Permian extinction , 2016, Proceedings of the National Academy of Sciences.

[21]  Carl I. Steefel,et al.  Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment , 2016, Biogeochemistry.

[22]  S. Breitenbach,et al.  Closing in on the marine 238U/235U budget , 2016 .

[23]  T. Johnson,et al.  A Cenozoic seawater redox record derived from 238U/235U in ferromanganese crusts , 2016, American Journal of Science.

[24]  W. Minarik,et al.  Geochemistry of Neoproterozoic black shales from Svalbard: Implications for oceanic redox conditions spanning Cryogenian glaciations , 2015 .

[25]  A. Knoll,et al.  The Ecological Physiology of Earth's Second Oxygen Revolution , 2015 .

[26]  N. Dauphas,et al.  Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia , 2015 .

[27]  B. Beauchamp,et al.  Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction , 2015 .

[28]  C. Stirling,et al.  Isotope fractionation of 238U and 235U during biologically-mediated uranium reduction , 2015 .

[29]  A. Anbar,et al.  Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period , 2015 .

[30]  R. Bernier-Latmani,et al.  Uranium isotopes fingerprint biotic reduction , 2015, Proceedings of the National Academy of Sciences.

[31]  C. Holmden,et al.  Uranium isotope fractionation in Saanich Inlet: A modern analog study of a paleoredox tracer , 2015 .

[32]  S. Eckert,et al.  Uranium and molybdenum isotope systematics in modern euxinic basins: Case studies from the central Baltic Sea and the Kyllaren fjord (Norway) , 2015 .

[33]  J. Amend,et al.  Catabolic rates, population sizes and doubling/replacement times of microorganisms in natural settings , 2015, American Journal of Science.

[34]  T. Lyons,et al.  Controls on trace metal authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient settings , 2015, American Journal of Science.

[35]  A. Anbar,et al.  Uranium isotope systematics of ferromanganese crusts in the Pacific Ocean: Implications for the marine 238U/235U isotope system , 2014 .

[36]  D. Canfield,et al.  Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event. , 2014, Earth and planetary science letters.

[37]  T. Lyons,et al.  A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox , 2014 .

[38]  R. Sanford,et al.  Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates , 2014 .

[39]  O. Rouxel,et al.  Coupled molybdenum, iron and uranium stable isotopes as oceanic paleoredox proxies during the Paleoproterozoic Shunga Event , 2013 .

[40]  A. Anbar,et al.  Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50Ga , 2013 .

[41]  K. Williams,et al.  Abiotic U(VI) reduction by sorbed Fe(II) on natural sediments , 2013 .

[42]  B. Jørgensen,et al.  Quantifying the degradation of organic matter in marine sediments: A review and synthesis , 2013 .

[43]  A. Bekker,et al.  Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales , 2013 .

[44]  K. Maher,et al.  Environmental speciation of actinides. , 2013, Inorganic chemistry.

[45]  A. Bekker,et al.  Proterozoic ocean redox and biogeochemical stasis , 2013, Proceedings of the National Academy of Sciences.

[46]  K. Williams,et al.  Uranium redox transition pathways in acetate-amended sediments , 2013, Proceedings of the National Academy of Sciences.

[47]  T. Fujii,et al.  Nuclear field shift in natural environments , 2013 .

[48]  K. Williams,et al.  No measurable changes in (238)U/(235)U due to desorption-adsorption of U(VI) from groundwater at the Rifle, Colorado, integrated field research challenge site. , 2013, Environmental science & technology.

[49]  A. Anbar,et al.  Ocean oxygenation in the wake of the Marinoan glaciation , 2012, Nature.

[50]  T. Algeo,et al.  Paleoceanographic applications of trace-metal concentration data , 2012 .

[51]  K. Wallmann,et al.  Controls on organic carbon and molybdenum accumulation in Cretaceous marine sediments from the Cenomanian–Turonian interval including Oceanic Anoxic Event 2 , 2012 .

[52]  Sergi Molins,et al.  Timing the onset of sulfate reduction over multiple subsurface acetate amendments by measurement and modeling of sulfur isotope fractionation. , 2012, Environmental science & technology.

[53]  E. Peltzer,et al.  Hypoxia by degrees: Establishing definitions for a changing ocean , 2011 .

[54]  Yilin Fang,et al.  Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment. , 2011, Journal of contaminant hydrology.

[55]  A. Anbar,et al.  Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction , 2011, Proceedings of the National Academy of Sciences.

[56]  C. Criddle,et al.  Reduction of uranium(VI) by soluble iron(II) conforms with thermodynamic predictions. , 2011, Environmental science & technology.

[57]  Bernhard Schnetger,et al.  A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins , 2010 .

[58]  A. Anbar,et al.  Global enhancement of ocean anoxia during Oceanic Anoxic Event 2: A quantitative approach using U isotopes , 2010 .

[59]  T. Algeo,et al.  Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation , 2009 .

[60]  Steven B. Yabusaki,et al.  Multicomponent reactive transport modeling of uranium bioremediation field experiments , 2009 .

[61]  D. Canfield,et al.  Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away , 2009, Geobiology.

[62]  W. Martin,et al.  Uranium diagenesis in sediments underlying bottom waters with high oxygen content , 2009 .

[63]  A. Paulmier,et al.  Oxygen minimum zones (OMZs) in the modern ocean , 2009 .

[64]  T. Johnson,et al.  Effective isotopic fractionation factors for solute removal by reactive sediments: a laboratory microcosm and slurry study. , 2008, Environmental science & technology.

[65]  J. Karstensen,et al.  The oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans , 2008 .

[66]  L. Kump,et al.  Oceanic Euxinia in Earth History: Causes and Consequences , 2008 .

[67]  P. Kitanidis,et al.  Growth and cometabolic reduction kinetics of a uranium‐ and sulfate‐reducing Desulfovibrio/Clostridia mixed culture: Temperature effects , 2008, Biotechnology and bioengineering.

[68]  A. Anbar,et al.  Tracing the stepwise oxygenation of the Proterozoic ocean , 2008, Nature.

[69]  E. Boyle,et al.  Natural fractionation of 238U/235U , 2008 .

[70]  J. Schieber,et al.  Accretion of Mudstone Beds from Migrating Floccule Ripples , 2007, Science.

[71]  E. Schauble Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements , 2007 .

[72]  Ariel D. Anbar,et al.  Metal Stable Isotopes in Paleoceanography , 2007 .

[73]  S. Fendorf,et al.  Quantifying constraints imposed by calcium and iron on bacterial reduction of uranium(VI). , 2007, Journal of environmental quality.

[74]  T. Lyons,et al.  A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins , 2006 .

[75]  D. Hammond,et al.  Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential , 2006 .

[76]  T. Lyons,et al.  Trace metals as paleoredox and paleoproductivity proxies: An update , 2006 .

[77]  Huifang Xu,et al.  Kinetics of uranium(VI) reduction by hydrogen sulfide in anoxic aqueous systems. , 2006, Environmental science & technology.

[78]  Carl I. Steefel,et al.  The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments , 2006 .

[79]  S. Emerson,et al.  Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin , 2005 .

[80]  T. Lyons,et al.  Organic carbon burial rate and the molybdenum proxy: Theoretical framework and application to Cenomanian-Turonian oceanic anoxic event 2 , 2005 .

[81]  John J. Helly,et al.  Global distribution of naturally occurring marine hypoxia on continental margins , 2004 .

[82]  S W Wang,et al.  Simulating bioremediation of uranium-contaminated aquifers; uncertainty assessment of model parameters. , 2003, Journal of contaminant hydrology.

[83]  T. Lyons,et al.  Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela , 2003 .

[84]  Chongxuan Liu,et al.  Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. , 2002, Biotechnology and bioengineering.

[85]  William J. Jenkins,et al.  A reevaluation of the oceanic uranium budget for the Holocene , 2002 .

[86]  M. Fleisher,et al.  Preservation of particulate non-lithogenic uranium in marine sediments , 2002 .

[87]  C. G. Wheat,et al.  Effect of fluid-sediment reaction on hydrothermal fluxes of major elements, eastern flank of the Juan de Fuca Ridge , 2002 .

[88]  David Archer,et al.  A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains , 2002 .

[89]  Karline Soetaert,et al.  A model for early diagenetic processes in sediments of the continental shelf of the Black sea , 2002 .

[90]  G. Chilingarian,et al.  The cementation factor of Archie's equation for shaly sandstone reservoirs , 1999 .

[91]  L. Figueroa,et al.  Modeling the Removal of Uranium U(VI) from Aqueous Solutions in the Presence of Sulfate Reducing Bacteria , 1999 .

[92]  S. Emerson,et al.  The geochemistry of redox sensitive trace metals in sediments , 1999 .

[93]  N. Valentine,et al.  Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions. , 1997, Biotechnology and bioengineering.

[94]  A. Devol,et al.  Isotopic fractionation of oxygen and nitrogen in coastal marine sediments , 1997 .

[95]  Philippe Van Cappellen,et al.  A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments , 1996 .

[96]  J. Bigeleisen Nuclear Size and Shape Effects in Chemical Reactions. Isotope Chemistry of the Heavy Elements , 1996 .

[97]  Karline Soetaert,et al.  A model of early diagenetic processes from the shelf to abyssal depths , 1996 .

[98]  Yifeng Wang,et al.  Cycling of iron and manganese in surface sediments; a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese , 1996 .

[99]  D. DePaolo,et al.  Interpretation of isotopic data in groundwater-rock systems: Model development and application to Sr isotope data , 1994 .

[100]  C. Steefel,et al.  A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution rea , 1994 .

[101]  J. P. Kennett,et al.  Proceedings of the Ocean Drilling Program, 146 Part 2 Initial Reports , 1994 .

[102]  E. Roden,et al.  Enzymatic iron and uranium reduction by sulfate-reducing bacteria , 1993 .

[103]  Bo Barker Jørgensen,et al.  Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity , 1993 .

[104]  R. Berner,et al.  Carbon-sulfur-iron systematics of the uppermost deep-water sediments of the Black Sea , 1992 .

[105]  M. Palmer,et al.  Uranium in the oceans: Where it goes and why , 1991 .

[106]  M. Bender The δ18O of dissolved O2 in seawater: A unique tracer of circulation and respiration in the deep sea , 1990 .

[107]  S. Colley,et al.  Authigenic uranium in Atlantic sediments of the last glacial stage — a diagenetic phenomenon , 1990 .

[108]  J. Cochran,et al.  Uranium removal in oceanic sediments and the oceanic U balance , 1990 .

[109]  M. Fleisher,et al.  Uranium deposition in saanich inlet sediments, vancouver island , 1989 .

[110]  M. Fleisher,et al.  Concentration, oxidation state, and particulate flux of uranium in the Black Sea , 1989 .

[111]  R. Berner,et al.  A mathematical model for the early diagenesis of phosphorus and fluorine in marine sediments; apatite precipitation , 1988 .

[112]  J. Cochran,et al.  The geochemistry of uranium and thorium in coastal marine sediments and sediment pore waters , 1986 .

[113]  M. Alexander,et al.  Models for mineralization kinetics with the variables of substrate concentration and population density , 1984, Applied and environmental microbiology.

[114]  D. DeMaster,et al.  Concepts of sediment deposition and accumulation applied to the continental shelf near the mouth of the Yangtze River , 1983 .

[115]  R. Anderson Concentration, vertical flux, and remineralization of particulate uranium in seawater , 1982 .

[116]  D. Langmuir,et al.  Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits , 1978 .

[117]  K. Knauss,et al.  Uranium in open ocean: concentration and isotopic composition☆ , 1977 .

[118]  Li Yuan-hui,et al.  Diffusion of ions in sea water and in deep-sea sediments , 1974 .

[119]  C. Stirling,et al.  Uranium isotope fractionation , 2017 .

[120]  Carl I. Steefel,et al.  A large column analog experiment of stable isotope variations during reactive transport: I. A comprehensive model of sulfur cycling and δ34S fractionation , 2014 .

[121]  C. Steefel,et al.  Modeling Coupled Chemical and Isotopic Equilibration Rates , 2014 .

[122]  Paul W. J. Glover,et al.  What is the cementation exponent? A new interpretation , 2009 .

[123]  L. Krumholz,et al.  Uranium reduction. , 2006, Annual review of microbiology.

[124]  D. Hammond,et al.  Authigenic uranium: Relationship to oxygen penetration depth and organic carbon rain , 2005 .

[125]  P. Tréguer,et al.  Biogenic silica recycling in surficial sediments across the Polar Front of the Southern Ocean (Indian Sector) , 1997 .

[126]  Derek R. Lovley,et al.  Enzymic uranium precipitation , 1992 .