Markov tree options pricing

This paper questions one of the fundamental assumptions made in options pricing: that the daily returns of a stock are independent and identically distributed (IID). We apply an estimation procedure to years of daily return data for all stocks in the French CAC-40 index. We find six stocks whose log returns are best modeled by a first-order Markov chain, not an IID sequence. We further propose the Markov tree (MT) model, a modification of the standard binomial options pricing model, that takes into account this first-order Markov behavior. Empirical tests reveal that, for the six stocks found earlier, the MT model’s option prices agree very closely with market prices.

[1]  Jacques Janssen,et al.  Markov and semi-Markov option pricing models with arbitrage possibility , 1997 .

[2]  Weiping Li,et al.  Jump-Diffusion Option Pricing without IID Jumps , 2008 .

[3]  Baris Tan,et al.  Markov chain test for time dependence and homogeneity: An analytical and empirical evaluation , 2002, Eur. J. Oper. Res..

[4]  J. Primbs,et al.  Distribution-based option pricing on lattice asset dynamics models , 2002, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[5]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[6]  Grant R. Mcqueen,et al.  Are Stock Returns Predictable? A Test Using Markov Chains , 1991 .

[7]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[8]  Jacques Janssen,et al.  European and American options: The semi-Markov case , 2009 .

[9]  I. Florescu,et al.  Stochastic Volatility: Option Pricing using a Multinomial Recombining Tree , 2005 .

[10]  K. Gabriel,et al.  A Markov chain model for daily rainfall occurrence at Tel Aviv , 1962 .

[11]  Muruhan Rathinam,et al.  Option Pricing with a Pentanomial Lattice Model that Incorporates Skewness and Kurtosis , 2007 .

[12]  Jin-Chuan Duan,et al.  American option pricing under GARCH by a Markov chain approximation , 2001 .

[13]  I. Csiszár,et al.  The consistency of the BIC Markov order estimator , 2000 .

[14]  Steven E. Shreve,et al.  Stochastic Calculus for Finance : The Binomial Asset Pricing Model , 2007 .

[15]  M. Rubinstein. Implied Binomial Trees , 1994 .