Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor

[1]  E. Mackow,et al.  Recombinant ACE2 Expression Is Required for SARS-CoV-2 To Infect Primary Human Endothelial Cells and Induce Inflammatory and Procoagulative Responses , 2020, bioRxiv.

[2]  J. Skehel,et al.  SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects , 2020, Nature Structural & Molecular Biology.

[3]  Nathan E. Lewis,et al.  Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor , 2020, bioRxiv.

[4]  L. Dodd,et al.  Remdesivir for the Treatment of Covid-19 — Final Report , 2020, The New England journal of medicine.

[5]  R. Baric,et al.  DNA vaccine protection against SARS-CoV-2 in rhesus macaques , 2020, Science.

[6]  Amalio Telenti,et al.  Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody , 2020, Nature.

[7]  Daniel Wrapp,et al.  Site-specific glycan analysis of the SARS-CoV-2 spike , 2020, Science.

[8]  Asif Shajahan,et al.  Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2 , 2020, Glycobiology.

[9]  A. Selva-O'Callaghan,et al.  Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review , 2020, Autoimmunity Reviews.

[10]  S. Zhang,et al.  Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig , 2020, Nature Communications.

[11]  Kiyoko F. Aoki-Kinoshita,et al.  GlyGen data model and processing workflow , 2020, Bioinform..

[12]  A. Huisman,et al.  Thromboembolic events and apparent heparin resistance in patients infected with SARS‐CoV‐2 , 2020, International journal of laboratory hematology.

[13]  Martin Stahl,et al.  Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2 , 2020, Cell.

[14]  Kehu Yang,et al.  Potential effectiveness and safety of antiviral agents in children with coronavirus disease 2019: a rapid review and meta-analysis , 2020, medRxiv.

[15]  Xuhua Xia,et al.  Extreme Genomic CpG Deficiency in SARS-CoV-2 and Evasion of Host Antiviral Defense , 2020, Molecular biology and evolution.

[16]  Hossein Khalili,et al.  Considerations for Statin Therapy in Patients with COVID‐19 , 2020, Pharmacotherapy.

[17]  Linqi Zhang,et al.  Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor , 2020, Nature.

[18]  Dengju Li,et al.  Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy , 2020, Journal of Thrombosis and Haemostasis.

[19]  S. Opal,et al.  Hiding in Plain Sight: an Approach to Treating Patients with Severe COVID-19 Infection , 2020, mBio.

[20]  Tao Zhang,et al.  Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak , 2020, Current Biology.

[21]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[22]  A. Ward,et al.  Networks of HIV-1 Envelope Glycans Maintain Antibody Epitopes in the Face of Glycan Additions and Deletions , 2020, bioRxiv.

[23]  Zachary T. Berndsen,et al.  Vulnerabilities in coronavirus glycan shields despite extensive glycosylation , 2020, Nature Communications.

[24]  B. Graham,et al.  Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation , 2020, Science.

[25]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[26]  E. Holmes,et al.  Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding , 2020, The Lancet.

[27]  Gaurav Agarwal,et al.  GlyGen: Computational and Informatics Resources for Glycoscience. , 2020, Glycobiology.

[28]  M. Ishihara,et al.  Glycan Profiles of gp120 Protein Vaccines from Four Major HIV-1 Subtypes Produced from Different Host Cell Lines under Non-GMP or GMP Conditions , 2020, Journal of Virology.

[29]  G. Lauc,et al.  Altered N‐glycosylation profiles as potential biomarkers and drug targets in diabetes , 2019, FEBS letters.

[30]  I. Wilson,et al.  Exploitation of glycosylation in enveloped virus pathobiology , 2019, Biochimica et Biophysica Acta (BBA) - General Subjects.

[31]  D. Irvine,et al.  Immunization expands HIV-1 V3-glycan specific B-cells in mice and macaques , 2019, Nature.

[32]  Michael Tiemeyer,et al.  GRITS Toolbox-a freely available software for processing, annotating and archiving glycomics mass spectrometry data. , 2019, Glycobiology.

[33]  Simon C. Potter,et al.  The EMBL-EBI search and sequence analysis tools APIs in 2019 , 2019, Nucleic Acids Res..

[34]  Konstantinos D. Tsirigos,et al.  SignalP 5.0 improves signal peptide predictions using deep neural networks , 2019, Nature Biotechnology.

[35]  S. Nishimura,et al.  Healthy human serum N-glycan profiling reveals the influence of ethnic variation on the identified cancer-relevant glycan biomarkers , 2018, PloS one.

[36]  M. Liao,et al.  Structural basis of coreceptor recognition by HIV-1 envelope spike , 2018, Nature.

[37]  G. Lauc,et al.  N-glycosylation patterns of plasma proteins and immunoglobulin G in chronic obstructive pulmonary disease , 2018, Journal of Translational Medicine.

[38]  Simon A. A. Travers,et al.  Structural Rearrangements Maintain the Glycan Shield of an HIV-1 Envelope Trimer After the Loss of a Glycan , 2018, Scientific Reports.

[39]  David J. Harvey,et al.  Site-Specific Glycosylation of Virion-Derived HIV-1 Env Is Mimicked by a Soluble Trimeric Immunogen , 2018, Cell reports.

[40]  F. Alt,et al.  Glycan Masking Focuses Immune Responses to the HIV‐1 CD4‐Binding Site and Enhances Elicitation of VRC01‐Class Precursor Antibodies , 2018, Immunity.

[41]  Douglas A. Lauffenburger,et al.  Exploiting glycan topography for computational design of Env glycoprotein antigenicity , 2018, PLoS Comput. Biol..

[42]  Kiyoko F. Aoki-Kinoshita,et al.  GlyTouCan: an accessible glycan structure repository. , 2017, Glycobiology.

[43]  Hao Chi,et al.  pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification , 2017, Nature Communications.

[44]  Cinque S. Soto,et al.  Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation. , 2017, Cell reports.

[45]  Ryan McBride,et al.  Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity. , 2017, Cell host & microbe.

[46]  Ajit Varki,et al.  Biological roles of glycans , 2016, Glycobiology.

[47]  John P. Moore,et al.  Molecular Architecture of the Cleavage-Dependent Mannose Patch on a Soluble HIV-1 Envelope Glycoprotein Trimer , 2016, Journal of Virology.

[48]  Fang Li,et al.  Structure, Function, and Evolution of Coronavirus Spike Proteins. , 2016, Annual review of virology.

[49]  Robert J Woods,et al.  Gly-Spec: a webtool for predicting glycan specificity by integrating glycan array screening data and 3D structure. , 2016, Glycobiology.

[50]  Klaus Schulten,et al.  3D implementation of the symbol nomenclature for graphical representation of glycans. , 2016, Glycobiology.

[51]  Evan Bolton,et al.  Symbol Nomenclature for Graphical Representations of Glycans. , 2015, Glycobiology.

[52]  Kiyoko F. Aoki-Kinoshita,et al.  GlyTouCan 1.0 – The international glycan structure repository , 2015, Nucleic Acids Res..

[53]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[54]  F. Taguchi,et al.  Incorporation of Spike and Membrane Glycoproteins into Coronavirus Virions , 2015, Viruses.

[55]  R. Plemper,et al.  Efficient replication of a paramyxovirus independent of full zippering of the fusion protein six-helix bundle domain , 2014, Proceedings of the National Academy of Sciences.

[56]  Bethany Lachele Foley,et al.  Importance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaff , 2014, J. Comput. Chem..

[57]  T. Spector,et al.  Glycans Are a Novel Biomarker of Chronological and Biological Ages , 2013, The journals of gerontology. Series A, Biological sciences and medical sciences.

[58]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. , 2013, Journal of chemical theory and computation.

[59]  Gerald W. Hart,et al.  Glycomics: Building Upon Proteomics to Advance Glycosciences , 2013, Molecular & Cellular Proteomics.

[60]  Yong J. Kil,et al.  Byonic: Advanced Peptide and Protein Identification Software , 2012, Current protocols in bioinformatics.

[61]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born , 2012, Journal of chemical theory and computation.

[62]  Martin R Larsen,et al.  Chemical deamidation: a common pitfall in large-scale N-linked glycoproteomic mass spectrometry-based analyses. , 2012, Journal of proteome research.

[63]  W. Burns,et al.  Angiotensin-converting enzyme 2 is a key modulator of the renin–angiotensin system in cardiovascular and renal disease , 2011, Current opinion in nephrology and hypertension.

[64]  R. Plemper,et al.  Blue Native PAGE and Biomolecular Complementation Reveal a Tetrameric or Higher-Order Oligomer Organization of the Physiological Measles Virus Attachment Protein H , 2010, Journal of Virology.

[65]  Florian Gnad,et al.  Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints , 2010, Cell.

[66]  Pauline M Rudd,et al.  Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein , 2010, Virology.

[67]  Kay-Hooi Khoo,et al.  Glycans on influenza hemagglutinin affect receptor binding and immune response , 2009, Proceedings of the National Academy of Sciences.

[68]  A. Klein,et al.  Soluble angiotensin-converting enzyme 2 in human heart failure: relation with myocardial function and clinical outcomes. , 2009, Journal of cardiac failure.

[69]  J. Snyder,et al.  Probing the Spatial Organization of Measles Virus Fusion Complexes , 2009, Journal of Virology.

[70]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[71]  C. Ruiz-Cañada,et al.  Cotranslational and Posttranslational N-Glycosylation of Polypeptides by Distinct Mammalian OST Isoforms , 2009, Cell.

[72]  J. Marth,et al.  Mammalian glycosylation in immunity , 2008, Nature Reviews Immunology.

[73]  K. Aoki,et al.  The Diversity of O-Linked Glycans Expressed during Drosophila melanogaster Development Reflects Stage- and Tissue-specific Requirements for Cell Signaling* , 2008, Journal of Biological Chemistry.

[74]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[75]  K. Aoki,et al.  Dynamic Developmental Elaboration of N-Linked Glycan Complexity in the Drosophila melanogaster Embryo* , 2007, Journal of Biological Chemistry.

[76]  Silke Stertz,et al.  The intracellular sites of early replication and budding of SARS-coronavirus , 2007, Virology.

[77]  N. Hooper,et al.  Tumor Necrosis Factor-α Convertase (ADAM17) Mediates Regulated Ectodomain Shedding of the Severe-acute Respiratory Syndrome-Coronavirus (SARS-CoV) Receptor, Angiotensin-converting Enzyme-2 (ACE2) , 2005, Journal of Biological Chemistry.

[78]  Chengsheng Zhang,et al.  Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 , 2005, The EMBO journal.

[79]  John L. Sullivan,et al.  Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus , 2003, Nature.

[80]  J. Peiris,et al.  Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003 , 2003, The Lancet.

[81]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[82]  T. Darden,et al.  Molecular modeling: an experimental tool. , 1993, Environmental health perspectives.

[83]  K. Anumula,et al.  A comprehensive procedure for preparation of partially methylated alditol acetates from glycoprotein carbohydrates. , 1992, Analytical biochemistry.

[84]  Rommie E. Amaro,et al.  Shielding and Beyond: The Roles of Glycans in SARS-CoV-2 Spike Protein , 2020 .