Calibration of nonlocal models for tensile fracture in quasi-brittle heterogeneous materials

A new calibration strategy for integral-type nonlocal damage models for quasi-brittle materials is proposed. It is based on the assumption that in the fracture process zone in quasi-brittle materials the large majority of energy is dissipated in a localised rough crack. Measuring the roughness of the fracture surface allows for calibrating the interaction radius of nonlocal models by matching experimental and numerical standard deviations of spatial distributions of dissipated energy densities. Firstly, fracture analyses with a lattice model with random fields for strength and fracture energy are used to support the assumptions of the calibration process. Then, the calibration strategy is applied to an integral-type nonlocal damage model for the case of a fracture surface of a three-point bending test.

[1]  Z. Bažant,et al.  Scaling of structural strength , 2003 .

[2]  J. Bolander,et al.  Fracture analyses using spring networks with random geometry , 1998 .

[3]  Jean-François Dubé,et al.  Calibration of nonlocal damage model from size effect tests , 2003 .

[4]  M. Elices,et al.  Measurement of the fracture energy using three-point bend tests: Part 3—influence of cutting theP-δ tail , 1992 .

[5]  H. Hikosaka,et al.  Fracture in concrete specimens of differing scale , 1998 .

[6]  J. Mier,et al.  Simple lattice model for numerical simulation of fracture of concrete materials and structures , 1992 .

[7]  L. J. Sluys,et al.  Estimation of model parameters in nonlocal damage theories by inverse analysis techniques , 2006 .

[8]  Gilles Pijaudier-Cabot,et al.  Failure and size effect for notched and unnotched concrete beams , 2013 .

[9]  M. Elices,et al.  Measurement of the fracture energy using three-point bend tests: Part 2—Influence of bulk energy dissipation , 1992 .

[10]  Zdeněk P. Bažant,et al.  Comprehensive concrete fracture tests: Description and results , 2013 .

[11]  Gilles Pijaudier-Cabot,et al.  Measurement of Characteristic Length of Nonlocal Continuum , 1989 .

[12]  Peter Grassl,et al.  On a 2D hydro-mechanical lattice approach for modelling hydraulic fracture , 2014, 1411.7901.

[13]  Harold Auradou,et al.  Anisotropic self-affine properties of experimental fracture surfaces , 2006 .

[14]  Jan Carmeliet,et al.  Optimal estimation of gradient damage parameters from localization phenomena in quasi‐brittle materials , 1999 .

[15]  Milan Jirásek,et al.  Size effect on fracture energy induced by non‐locality , 2004 .

[16]  S. Xia,et al.  A nonlocal damage theory , 1987 .

[17]  K. Otsuka,et al.  Fracture process zone in concrete tension specimen , 2000 .

[18]  Roux,et al.  Fracture of disordered, elastic lattices in two dimensions. , 1989, Physical review. B, Condensed matter.

[19]  Gilles Pijaudier-Cabot,et al.  Progressive damage in discrete models and consequences on continuum modelling , 1996 .

[20]  S. Morel,et al.  Scaling properties of mortar fracture surfaces , 2006 .

[21]  E. Landis Micro–macro fracture relationships and acoustic emissions in concrete , 1999 .

[22]  L. Sluys,et al.  Calibration of a higher-order continuum model using global and local data , 2008 .

[23]  J. Tejchman,et al.  Measurements and Calculations of the Width of the Fracture Process Zones on the Surface of Notched Concrete Beams , 2011 .

[24]  S. Niiseki,et al.  Influence of aggregate size on fracture process zone of concrete detected with three dimensional acoustic emission technique , 1991 .

[25]  Bořek Patzák,et al.  OOFEM — an Object-oriented Simulation Tool for Advanced Modeling of Materials and Structures , 2012 .

[26]  S. Morel,et al.  Transient damage spreading and anomalous scaling in mortar crack surfaces. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Wei Dong,et al.  An experimental investigation on the FPZ properties in concrete using digital image correlation technique , 2011 .

[28]  Bhushan Lal Karihaloo,et al.  Fracture process zone size and true fracture energy of concrete using acoustic emission , 2010 .

[29]  M. Shinozuka,et al.  Digital simulation of random processes and its applications , 1972 .

[30]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[31]  David A Lange,et al.  Relationship between Fracture Surface Roughness and Fracture Behavior of Cement Paste and Mortar , 1993 .

[32]  Zdenek P. Bazant,et al.  Interface element modeling of fracture in aggregate composites , 1987 .

[33]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[34]  H. Horii,et al.  Analytical modeling of microcracking and bridging in the fracture of quasi-brittle materials , 1992 .

[35]  M. Jirásek,et al.  Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension , 2009, 0901.4636.

[36]  Peter Grassl,et al.  Meso-scale modelling of the size effect on the fracture process zone of concrete , 2011, 1107.2311.

[37]  Sandro Dei Poli,et al.  TENSILE BEHAVIOR OF CONCRETE , 1987 .

[38]  Peter Grassl,et al.  Random Lattice-Particle Simulation of Statistical Size Effect in Quasi-Brittle Structures Failing at Crack Initiation , 2009 .

[39]  Peter Grassl,et al.  Evaluation of nonlocal approaches for modelling fracture near nonconvex boundaries , 2014, 1406.3381.

[40]  J. Dube,et al.  Correlation between internal length, fracture process zone and size effect in mortar and model materials , 2005 .

[41]  Peter Grassl,et al.  Mesoscale analysis of failure in quasi‐brittle materials: comparison between lattice model and acoustic emission data , 2015, International journal for numerical and analytical methods in geomechanics.