Berth and quay crane allocation: a moldable task scheduling model

We study the problem of allocating berths to incoming ships and assigning the necessary quay cranes to the ships at a port container terminal. We formulate the problem as the moldable task scheduling problem by considering the tasks as ships and processors as quay cranes assigned to the ships based on the observation that the berthing duration of a ship depends on the number of quay cranes allocated to it. In the model, the processing speed of a task is considered to be a non-linear function of the number of processors allocated to it. We present a suboptimal algorithm that obtains a feasible solution to the discrete version of the problem from the continuous version, that is, where the tasks may require fractional quantities of the resources. We conducted computational experiments to evaluate the performance of the algorithm. The computational results show that the average behaviour of the algorithm is very good.

[1]  Denis Trystram,et al.  Efficient approximation algorithms for scheduling malleable tasks , 1999, SPAA '99.

[2]  Jacek Blazewicz,et al.  Scheduling Multiprocessor Tasks to Minimize Schedule Length , 1986, IEEE Transactions on Computers.

[3]  Andrew Lim,et al.  A m‐parallel crane scheduling problem with a non‐crossing constraint , 2007 .

[4]  Stefan Voß,et al.  Container terminal operation and operations research — a classification and literature review , 2004 .

[5]  Kap Hwan Kim,et al.  A scheduling method for Berth and Quay cranes , 2003 .

[6]  Carlos F. Daganzo,et al.  THE CRANE SCHEDULING PROBLEM , 1989 .

[7]  Philip S. Yu,et al.  Approximate algorithms scheduling parallelizable tasks , 1992, SPAA '92.

[8]  Pierre-François Dutot,et al.  Scheduling Parallel Tasks Approximation Algorithms , 2004, Handbook of Scheduling.

[9]  Katta G. Murty,et al.  A decision support system for operations in a container terminal , 2005, Decis. Support Syst..

[10]  Pierre Hansen,et al.  Variable neighborhood search for minimum cost berth allocation , 2003, Eur. J. Oper. Res..

[11]  Chung-Lun Li,et al.  A multiprocessor task scheduling model for berth allocation: heuristic and worst-case analysis , 2002, Oper. Res. Lett..

[12]  Akio Imai,et al.  Berth allocation with service priority , 2003 .

[13]  Gilbert Laporte,et al.  Models and Tabu Search Heuristics for the Berth-Allocation Problem , 2005, Transp. Sci..

[14]  Andrew Lim,et al.  The berth planning problem , 1998, Oper. Res. Lett..

[15]  Jacek Blazewicz,et al.  Scheduling Malleable Tasks on Parallel Processors to Minimize the Makespan , 2004, Ann. Oper. Res..

[16]  Lei Wang,et al.  Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures , 2006 .

[17]  Errol L. Lloyd,et al.  Critical Path Scheduling with Resource and Processor Constraints , 1982, JACM.

[18]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[19]  M. F. Monaco,et al.  A tabu search heuristic for the quay crane scheduling problem , 2007 .

[20]  Akio Imai,et al.  The Dynamic Berth Allocation Problem for a Container Port , 2001 .

[21]  Gilbert Laporte,et al.  A branch‐and‐cut algorithm for the quay crane scheduling problem in a container terminal , 2006 .

[22]  Joseph Y.-T. Leung,et al.  Complexity of Scheduling Parallel Task Systems , 1989, SIAM J. Discret. Math..

[23]  Chung-lun Li,et al.  Scheduling with multiple-job-on-one-processor pattern , 1998 .

[24]  Christian Bierwirth,et al.  Heuristics for the integration of crane productivity in the berth allocation problem , 2009 .

[25]  Walter Ludwig,et al.  Algorithms for scheduling malleable and nonmalleable parallel tasks , 1996, Technical Report / University of Wisconsin, Madison / Computer Sciences Department.

[26]  Akio Imai,et al.  The simultaneous berth and quay crane allocation problem , 2008 .

[27]  Akio Imai,et al.  Efficient planning of berth allocation for container terminals in Asia , 1997 .

[28]  Carlos F. Daganzo,et al.  A branch and bound solution method for the crane scheduling problem , 1990 .

[29]  Jacek Blazewicz,et al.  Schedulling Malleable Task with Convex Processing Speed Functions , 2000, Computación y Sistemas.

[30]  Jacek Blazewicz,et al.  Approximation Algorithms for Scheduling Independent Malleable Tasks , 2001, Euro-Par.

[31]  Iris F. A. Vis,et al.  Transshipment of containers at a container terminal: An overview , 2003, Eur. J. Oper. Res..

[32]  Kap Hwan Kim,et al.  Berth scheduling for container terminals by using a sub-gradient optimization technique , 2002, J. Oper. Res. Soc..