Analysis of temporal patterns in animal movement networks

Over the past recent years, the study of animal movements has experienced a rapid growth thanks to the development of new technologies to automatically collect long-term individual data on wild animals (Flack, Nagy, Fiedler, Couzin, & Wikelski, 2018; Strandburg-Peshkin, Farine, Couzin, & Crofoot, 2015; Tomkiewicz, Fuller, Kie, & Bates, 2010). The acquisition of high resolution data has also required the development of new statistical tools to describe and analyse movements. At the most basic level, it is Received: 30 September 2019 | Accepted: 24 January 2020 DOI: 10.1111/2041-210X.13364

[1]  Johann Mourier,et al.  A multilayer perspective for inferring spatial and social functioning in animal movement networks , 2019 .

[2]  Damien R. Farine,et al.  Constructing, conducting and interpreting animal social network analysis , 2015, The Journal of animal ecology.

[3]  Leo Polansky,et al.  Disentangling the effects of forage, social rank, and risk on movement autocorrelation of elephants using Fourier and wavelet analyses , 2008, Proceedings of the National Academy of Sciences.

[4]  Robert Weibel,et al.  Towards a taxonomy of movement patterns , 2008, Inf. Vis..

[5]  D. R. Reynolds,et al.  Tracking bees with harmonic radar , 1996, Nature.

[6]  Sarel J Fleishman,et al.  Comment on "Network Motifs: Simple Building Blocks of Complex Networks" and "Superfamilies of Evolved and Designed Networks" , 2004, Science.

[7]  Mason A. Porter,et al.  The use of multilayer network analysis in animal behaviour , 2017, Animal Behaviour.

[8]  L. Chittka,et al.  Analysing plant–pollinator interactions with spatial movement networks , 2017 .

[9]  Norman L Carreck,et al.  Honeybees perform optimal scale-free searching flights when attempting to locate a food source , 2007, Journal of Experimental Biology.

[10]  Eliezer Gurarie,et al.  A novel method for identifying behavioural changes in animal movement data. , 2009, Ecology letters.

[11]  George Wittemyer,et al.  Applying network theory to animal movements to identify properties of landscape space use. , 2018, Ecological applications : a publication of the Ecological Society of America.

[12]  Alec L. Robitaille,et al.  Conducting social network analysis with animal telemetry data: Applications and methods using spatsoc , 2019 .

[13]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[14]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[15]  Markus Neteler,et al.  Partial migration in roe deer: migratory and resident tactics are end points of a behavioural gradient determined by ecological factors , 2011 .

[16]  Iain D Couzin,et al.  From local collective behavior to global migratory patterns in white storks , 2018, Science.

[17]  Noa Pinter-Wollman,et al.  Can Multilayer Networks Advance Animal Behavior Research? , 2018, Trends in ecology & evolution.

[18]  Frederic Bartumeus,et al.  Foraging success under uncertainty: search tradeoffs and optimal space use. , 2016, Ecology letters.

[19]  Leo Polansky,et al.  From moonlight to movement and synchronized randomness: Fourier and wavelet analyses of animal location time series data. , 2010, Ecology.

[20]  I. Couzin,et al.  Shared decision-making drives collective movement in wild baboons , 2015, Science.

[21]  Jure Leskovec,et al.  Motifs in Temporal Networks , 2016, WSDM.

[22]  Zhaolong Ning,et al.  Detection of Four-Node Motif in Complex Networks , 2017, COMPLEX NETWORKS.

[23]  Niko Balkenhol,et al.  Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns , 2016, Movement ecology.

[24]  A. Reynolds,et al.  Radar Tracking and Motion-Sensitive Cameras on Flowers Reveal the Development of Pollinator Multi-Destination Routes over Large Spatial Scales , 2012, PLoS biology.

[25]  S. Benhamou,et al.  Spatial analysis of animals' movements using a correlated random walk model* , 1988 .

[26]  Eric Deleersnijder,et al.  A Lévy-flight diffusion model to predict transgenic pollen dispersal , 2017, Journal of The Royal Society Interface.

[27]  Lars Chittka,et al.  A spatial network analysis of resource partitioning between bumblebees foraging on artificial flowers in a flight cage , 2019, Movement Ecology.

[28]  Jon Rokne,et al.  Encyclopedia of Social Network Analysis and Mining , 2014, Springer New York.

[29]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[30]  P. Turchin Quantitative Analysis Of Movement , 1998 .

[31]  Tijs Neutens,et al.  Extracting spatio‐temporal patterns in animal trajectories: an ecological application of sequence analysis methods , 2016 .

[32]  Ulf Geir Indahl,et al.  Deriving Animal Movement Behaviors Using Movement Parameters Extracted from Location Data , 2018, ISPRS Int. J. Geo Inf..

[33]  Eamonn J. Keogh,et al.  Mining motifs in massive time series databases , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[34]  Andy M. Reynolds,et al.  Optimal random Lévy-loop searching: New insights into the searching behaviours of central-place foragers , 2008 .

[35]  Robin Freeman,et al.  Emerging Network-Based Tools in Movement Ecology. , 2016, Trends in ecology & evolution.

[36]  Mark D. McDonnell,et al.  Motif-Role-Fingerprints: The Building-Blocks of Motifs, Clustering-Coefficients and Transitivities in Directed Networks , 2014, PloS one.

[37]  W. Rice ANALYZING TABLES OF STATISTICAL TESTS , 1989, Evolution; international journal of organic evolution.

[38]  Somayeh Dodge,et al.  Recursive multi‐frequency segmentation of movement trajectories (ReMuS) , 2017 .

[39]  M. Shlesinger,et al.  Lévy Walks Versus Lévy Flights , 1986 .

[40]  F Bartumeus,et al.  Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies. , 2002, Physical review letters.

[41]  Stanley M Tomkiewicz,et al.  Global positioning system and associated technologies in animal behaviour and ecological research , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[42]  Joshua R. Wang,et al.  Finding Four-Node Subgraphs in Triangle Time , 2015, SODA.

[43]  A. Reynolds Current status and future directions of Lévy walk research , 2018, Biology Open.

[44]  Lars Chittka,et al.  Signatures of a globally optimal searching strategy in the three-dimensional foraging flights of bumblebees , 2016, Scientific Reports.

[45]  Jonathan R. Potts,et al.  Finding turning‐points in ultra‐high‐resolution animal movement data , 2018, Methods in Ecology and Evolution.

[46]  I. Swingland,et al.  The Ecology of Animal Movement , 1985 .

[47]  Marius Agasse-Duval,et al.  Subgraphs and motifs in a dynamic airline network , 2018, ArXiv.

[48]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[49]  F. Cagnacci,et al.  Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[50]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[51]  Andy M. Reynolds,et al.  The Ontogeny of Bumblebee Flight Trajectories: From Naïve Explorers to Experienced Foragers , 2013, PloS one.

[52]  Iain D Couzin,et al.  Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement , 2016, eLife.

[53]  K. Safi,et al.  Temporal segmentation of animal trajectories informed by habitat use , 2016 .

[54]  O. Ovaskainen,et al.  State-space models of individual animal movement. , 2008, Trends in ecology & evolution.

[55]  Toni Giorgino,et al.  Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package , 2009 .