The Ensemble Kalman filter: a signal processing perspective

The ensemble Kalman filter (EnKF) is a Monte Carlo-based implementation of the Kalman filter (KF) for extremely high-dimensional, possibly nonlinear, and non-Gaussian state estimation problems. Its ability to handle state dimensions in the order of millions has made the EnKF a popular algorithm in different geoscientific disciplines. Despite a similarly vital need for scalable algorithms in signal processing, e.g., to make sense of the ever increasing amount of sensor data, the EnKF is hardly discussed in our field.This self-contained review is aimed at signal processing researchers and provides all the knowledge to get started with the EnKF. The algorithm is derived in a KF framework, without the often encountered geoscientific terminology. Algorithmic challenges and required extensions of the EnKF are provided, as well as relations to sigma point KF and particle filters. The relevant EnKF literature is summarized in an extensive survey and unique simulation examples, including popular benchmark problems, complement the theory with practical insights. The signal processing perspective highlights new directions of research and facilitates the exchange of potentially beneficial ideas, both for the EnKF and high-dimensional nonlinear and non-Gaussian filtering in general.

[1]  Patrick Nima Raanes,et al.  On the ensemble Rauch‐Tung‐Striebel smoother and its equivalence to the ensemble Kalman smoother , 2016 .

[2]  Emre Ozkan,et al.  Extended Target Tracking Using Gaussian Processes , 2015 .

[3]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[4]  D. Pham Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems , 2001 .

[5]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[6]  T. Hamill,et al.  A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme , 2000 .

[7]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[8]  Fredrik Gustafsson,et al.  Nonlinear Kalman Filters Explained: A Tutorial on Moment Computations and Sigma Point Methods , 2016 .

[9]  Henning Omre,et al.  Resampling the ensemble Kalman filter , 2013, Comput. Geosci..

[10]  N. Papadakis,et al.  Data assimilation with the weighted ensemble Kalman filter , 2010 .

[11]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[12]  Minjeong Kim,et al.  Data assimilation for wildland fires , 2007, IEEE Control Systems.

[13]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[14]  P. L. Houtekamer,et al.  Ensemble Kalman filtering , 2005 .

[15]  A. Stordal,et al.  Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter , 2011 .

[16]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[17]  T. Bengtsson,et al.  Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants , 2007 .

[18]  M. Frei Ensemble Kalman filtering and generalizations , 2013 .

[19]  Adrian J. Matthews PREDICTABILITY OF WEATHER AND CLIMATE, edited by Tim Palmer and Renate Hagedorn. 2006. Cambridge University Press: Cambridge, UK. ISBN 9780521848824. 718 pp. , 2009 .

[20]  J. Hansen,et al.  Implications of Stochastic and Deterministic Filters as Ensemble-Based Data Assimilation Methods in Varying Regimes of Error Growth , 2004 .

[21]  F Gustafsson,et al.  Particle filter theory and practice with positioning applications , 2010, IEEE Aerospace and Electronic Systems Magazine.

[22]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[23]  Pavel Sakov Comment on “Ensemble Kalman filter with the unscented transform” , 2009 .

[24]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[25]  Istvan Szunyogh,et al.  A local ensemble Kalman filter for atmospheric data assimilation , 2004 .

[26]  Dean S. Oliver,et al.  Improving the Ensemble Estimate of the Kalman Gain by Bootstrap Sampling , 2010 .

[27]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[28]  Thomas M. Hamill,et al.  Predictability of Weather and Climate: Ensemble-based atmospheric data assimilation , 2006 .

[29]  Dinh-Tuan Pham,et al.  Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters* , 2011, 1108.0168.

[30]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[31]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[32]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[33]  J. Mandel,et al.  On the convergence of the ensemble Kalman filter , 2009, Applications of mathematics.

[34]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[35]  F. Gland,et al.  Large sample asymptotics for the ensemble Kalman filter , 2009 .

[36]  S. Lakshmivarahan,et al.  Ensemble Kalman filter , 2009, IEEE Control Systems.

[37]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[38]  P. Leeuwen,et al.  Nonlinear data assimilation in geosciences: an extremely efficient particle filter , 2010 .

[39]  H. Kunsch,et al.  Bridging the ensemble Kalman and particle filters , 2012, 1208.0463.

[40]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[41]  P. J. van Leeuwen,et al.  A variance-minimizing filter for large-scale applications , 2003 .

[42]  Peter Jan,et al.  Particle Filtering in Geophysical Systems , 2009 .

[43]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .

[44]  Jonathan R. Stroud,et al.  Understanding the Ensemble Kalman Filter , 2016 .

[45]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[46]  Uwe D. Hanebeck,et al.  Extended Object Tracking with Random Hypersurface Models , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[47]  Nancy Nichols,et al.  Unbiased ensemble square root filters , 2007 .

[48]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[49]  D. Bernstein,et al.  What is the ensemble Kalman filter and how well does it work? , 2006, 2006 American Control Conference.

[50]  Cma Training,et al.  Predictability of Weather and Climate , 2011 .

[51]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[52]  Richard A. Frazin,et al.  Tomographic Imaging of Dynamic Objects With the Ensemble Kalman Filter , 2009, IEEE Transactions on Image Processing.

[53]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[54]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[55]  J.L. Anderson,et al.  Ensemble Kalman filters for large geophysical applications , 2009, IEEE Control Systems.

[56]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[57]  Richard A. Frazin,et al.  Asymptotic convergence of the ensemble Kalman filter , 2008, 2008 15th IEEE International Conference on Image Processing.

[58]  Fredrik Gustafsson,et al.  The ensemble Kalman filter and its relations to other nonlinear filters , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[59]  P. Oke,et al.  Implications of the Form of the Ensemble Transformation in the Ensemble Square Root Filters , 2008 .

[60]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[61]  J. Poterjoy A Localized Particle Filter for High-Dimensional Nonlinear Systems , 2016 .

[62]  Erik Blasch,et al.  Random-point-based filters: analysis and comparison in target tracking , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[63]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[64]  M. Zupanski Maximum Likelihood Ensemble Filter: Theoretical Aspects , 2005 .

[65]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[66]  Olwijn Leeuwenburgh,et al.  The impact of ensemble filter definition on the assimilation of temperature profiles in the tropical Pacific , 2005 .

[67]  Jeffrey L. Anderson,et al.  A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts , 1999 .

[68]  Pavel Sakov,et al.  Relation between two common localisation methods for the EnKF , 2011 .

[69]  Peter Jan van Leeuwen,et al.  Comment on ''Data Assimilation Using an Ensemble Kalman Filter Technique'' , 1999 .

[70]  I. M. Moroz,et al.  Ensemble Kalman filter with the unscented transform , 2009, 0901.0461.

[71]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[72]  P. Jones,et al.  The Twentieth Century Reanalysis Project , 2009 .

[73]  Fredrik Gustafsson,et al.  Computation and visualization of posterior densities in scalar nonlinear and non-Gaussian Bayesian filtering and smoothing problems , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[74]  Thomas M. Hamill,et al.  Ensemble Data Assimilation with the NCEP Global Forecast System , 2008 .

[75]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[76]  Hans R. Künsch,et al.  Mixture ensemble Kalman filters , 2013, Comput. Stat. Data Anal..

[77]  D. Stensrud,et al.  The Ensemble Kalman Filter for Combined State and Parameter Estimation , 2009 .

[78]  Sebastian Reich,et al.  A Nonparametric Ensemble Transform Method for Bayesian Inference , 2012, SIAM J. Sci. Comput..

[79]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[80]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[81]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.