Ultrafast adaptive optical near-field control

Simultaneous control of the spatial and temporal properties of the optical near field in the vicinity of a nanostructure is achieved by illumination with broadband optimally polarization-shaped femtosecond light pulses. Here we demonstrate the spatial control of the local linear and nonlinear fluence, the local spectral distribution, and the local temporal intensity profile on a subdiffraction length scale. The boundary-element method is used for a self-consistent solution of Maxwell's equations in the frequency domain. Particular control objectives for spatial field distribution and temporal evolution are expressed as fitness functions in an evolutionary algorithm that optimizes adaptively the polarization-shaped input light pulses. Substantial control according to different goals is demonstrated and the limits of controllability are investigated. The dominating control mechanism is local interference of near-field modes that are excited with the two independent polarization components of the incident light pulses and hence polarization pulse shaping is essential to achieve substantial control in the optical near field. The influence of other control mechanisms is discussed and a number of applications are presented.

[1]  U. Gaubatz,et al.  Population switching between vibrational levels in molecular beams , 1988 .

[2]  G. Gerber,et al.  Adaptive shaping of femtosecond polarization profiles , 2003 .

[3]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[4]  G Gerber,et al.  Femtosecond polarization pulse shaping. , 2001, Optics letters.

[5]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[6]  T. Kanai,et al.  Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses. , 2004, Physical review letters.

[7]  Zhijun Sun,et al.  Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. , 2005, Nano letters.

[8]  M. Shapiro,et al.  Enantiomeric purification of nonpolarized racemic mixtures using coherent light , 2003 .

[9]  Paul Brumer,et al.  Control of unimolecular reactions using coherent light , 1986 .

[10]  Stuart A. Rice,et al.  Coherent pulse sequence induced control of selectivity of reactions , 1986, International Laser Science Conference.

[11]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[12]  G. Gerber,et al.  Generation and characterization of polarization-shaped femtosecond laser pulses , 2002 .

[13]  F. J. García de abajo,et al.  Femtosecond shaping of transverse and longitudinal light polarization. , 2004, Optics letters.

[14]  D. Bergman,et al.  Coherent control of femtosecond energy localization in nanosystems. , 2002, Physical review letters.

[15]  G Gerber,et al.  Quantum control by ultrafast polarization shaping. , 2004, Physical review letters.

[16]  G. Gerber,et al.  Quantum control of gas-phase and liquid-phase femtochemistry. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  A. Weiner Femtosecond pulse shaping using spatial light modulators , 2000 .

[18]  Q-Han Park,et al.  Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. , 2003, Physical review letters.

[19]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[20]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[21]  T. Baumert,et al.  Femtosecond pulse shaping by an evolutionary algorithm with feedback , 1997 .

[22]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[23]  Jonas Beermann,et al.  Direct observation of localized second-harmonic enhancement in random metal nanostructures. , 2003, Physical review letters.

[24]  K. Hoki,et al.  Quantum control of molecular handedness in a randomly oriented racemic mixture using three polarization components of electric fields , 2002 .

[25]  F. G. D. Abajo,et al.  RELATIVISTIC ELECTRON ENERGY LOSS AND ELECTRON-INDUCED PHOTON EMISSION IN INHOMOGENEOUS DIELECTRICS , 1998 .

[26]  Stuart A. Rice,et al.  Control of selectivity of chemical reaction via control of wave packet evolution , 1985 .

[27]  B. Grishanin,et al.  Laser synthesis of chiral molecules in isotropic racemic media , 2001 .

[28]  X. Xie,et al.  Near-field fluorescence microscopy based on two-photon excitation with metal tips , 1999 .

[29]  Yaron Silberberg,et al.  Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy. , 2003, Physical review letters.

[30]  F. J. García de abajo,et al.  Nanoscopic ultrafast space-time-resolved spectroscopy. , 2005, Physical review letters.

[31]  A. Hohenau,et al.  Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles , 2005 .

[32]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[33]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[34]  H. Rabitz,et al.  Optimal quantum control with multi-polarization fields , 2004 .

[35]  M. Aeschlimann,et al.  The lateral photoemission distribution from a defined cluster/substrate system as probed by photoemission electron microscopy , 2005 .

[36]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[37]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[38]  W. Pfeiffer,et al.  Collective and single-particle dynamics in time-resolved two-photon photoemission , 2004 .

[39]  Samuel H. Tersigni,et al.  Wavepacket dancing: Achieving chemical selectivity by shaping light pulses , 1989 .

[40]  Y. Silberberg,et al.  Quantum control of the angular momentum distribution in multiphoton absorption processes. , 2004, Physical review letters.