A relationship between semiclassical and centroid correlation functions

A general relationship is established between semiclassical and centroid-based methods for calculating real-time quantum-mechanical correlation functions. It is first shown that the linearized semiclassical initial-value-representation (LSC-IVR) approximation can be obtained via direct linearization of the forward-backward action in the exact path integral expression for the correlation function. A Kubo-transformed two-time correlation function, with the position operator as one of the two operators, is then cast in terms of a carefully crafted exact path integral expression. Linearization of the corresponding forward–backward action, supplemented by the assumption that the dynamics of the centroid is decoupled from that of the higher normal modes, is then shown to lead to the centroid correlation function.

[1]  P. Rossky,et al.  An ansatz-based variational path integral centroid approach to vibrational energy relaxation in simple liquids , 2001 .

[2]  Focal points and the phase of the semiclassical propagator , 1978 .

[3]  G. Voth,et al.  The formulation of quantum statistical mechanics based on the Feynman path centroid density. V. Quantum instantaneous normal mode theory of liquids , 1994 .

[4]  R. Littlejohn The Van Vleck formula, Maslov theory, and phase space geometry , 1992 .

[5]  M. Gaveau,et al.  Spectroscopy, polarization and nonadiabatic dynamics of electronically excited Ba(Ar)n clusters: Theory and experiment , 1996 .

[6]  N. Makri,et al.  Forward−Backward Semiclassical Calculation of Spectral Line Shapes: I2 in a Rare Gas Cluster , 1999 .

[7]  D. Manolopoulos,et al.  APPLICATION OF THE FROZEN GAUSSIAN APPROXIMATION TO THE PHOTODISSOCIATION OF CO2 , 1995 .

[8]  Jianshu Cao,et al.  The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics , 1994 .

[9]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[10]  N Makri,et al.  Time-dependent quantum methods for large systems. , 1999, Annual review of physical chemistry.

[11]  The simulation of electronic absorption spectrum of a chromophore coupled to a condensed phase environment: Maximum entropy versus singular value decomposition approaches , 1997 .

[12]  N Makri,et al.  Rigorous forward-backward semiclassical formulation of many-body dynamics. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  G. D. Billing,et al.  On the applicability of the classical trajectory equations in inelastic scattering theory , 1975 .

[14]  E. Coronado,et al.  Ultrafast non-adiabatic dynamics of systems with multiple surface crossings: a test of the Meyer-Miller Hamiltonian with semiclassical initial value representation methods , 2001 .

[15]  M. Ovchinnikov,et al.  Condensed phase spectroscopy from mixed‐order semiclassical molecular dynamics: Absorption, emission, and resonant Raman spectra of I2 isolated in solid Kr , 1996 .

[16]  Gregory A. Voth,et al.  The computer simulation of proton transport in water , 1999 .

[17]  W. Miller,et al.  Semi-classical correction for quantum-mechanical scattering , 1994 .

[18]  C. DeWitt-Morette,et al.  Techniques and Applications of Path Integration , 1981 .

[19]  J. H. Van Vleck,et al.  The Correspondence Principle in the Statistical Interpretation of Quantum Mechanics , 1928 .

[20]  R. Ramírez,et al.  Spectral decomposition and Bloch equation of the operators represented by fixed-centroid path integrals , 2000 .

[21]  Jianshu Cao,et al.  The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties , 1994 .

[22]  M. Gutzwiller Phase-Integral Approximation in Momentum Space and the Bound States of an Atom , 1967 .

[23]  W. Miller,et al.  Semiclassical initial value representation for rotational degrees of freedom: The tunneling dynamics of HCl dimer , 1998 .

[24]  G. Voth,et al.  Pseudopotentials for centroid molecular dynamics: Application to self-diffusion in liquid para-hydrogen , 1996 .

[25]  J. Doll,et al.  Equilibrium and dynamical Fourier path integral methods , 2007 .

[26]  S. Garashchuk,et al.  Wave packet correlation function approach to H2(ν)+H→H+H2(ν′): semiclassical implementation , 1996 .

[27]  G. Voth,et al.  Ab initio centroid molecular dynamics: a fully quantum method for condensed-phase dynamics simulations , 1999 .

[28]  Haobin Wang,et al.  Forward–backward initial value representation for the calculation of thermal rate constants for reactions in complex molecular systems , 2000 .

[29]  Uniform semiclassical wave-packet propagation and eigenstate extraction in a smooth chaotic system. , 1994, Physical review letters.

[30]  B. J. Greenblatt,et al.  Femtosecond photoelectron spectroscopy of the I2− anion: A semiclassical molecular dynamics simulation method , 1999 .

[31]  Nancy Makri,et al.  Semiclassical influence functionals for quantum systems in anharmonic environments 1 Presented at th , 1998 .

[32]  Haobin Wang,et al.  Semiclassical description of quantum coherence effects and their quenching: A forward–backward initial value representation study , 2001 .

[33]  J. Shao,et al.  Quantum transition state theory: Perturbation expansion , 1998 .

[34]  E. Heller Reply to Comment on: Semiclassical time evolution without root searches: Comments and perspective , 1991 .

[35]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[36]  B. Berne,et al.  Real time quantum correlation functions. II. Maximum entropy numerical analytic continuation of path integral Monte Carlo and centroid molecular dynamics data , 1999 .

[37]  W. Miller,et al.  Semiclassical molecular dynamics simulations of ultrafast photodissociation dynamics associated with the Chappuis band of ozone , 1998 .

[38]  M. Gutzwiller,et al.  Periodic Orbits and Classical Quantization Conditions , 1971 .

[39]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[40]  William H. Miller,et al.  Semiclassical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems , 1998 .

[41]  William H. Miller,et al.  Mixed semiclassical-classical approaches to the dynamics of complex molecular systems , 1997 .

[42]  Eric J. Heller,et al.  Cellular dynamics: A new semiclassical approach to time‐dependent quantum mechanics , 1991 .

[43]  William H. Miller,et al.  Spiers Memorial Lecture Quantum and semiclassical theory of chemical reaction rates , 1998 .

[44]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[45]  W. Miller,et al.  Coherent state semiclassical initial value representation for the Boltzmann operator in thermal correlation functions , 2002 .

[46]  J. Yang,et al.  Complex plane method for interaction-induced spectra in 3D systems , 1994 .

[47]  P. Rossky,et al.  Path integral centroid molecular-dynamics evaluation of vibrational energy relaxation in condensed phase , 2001 .

[48]  Emilio Gallicchio,et al.  On the application of numerical analytic continuation methods to the study of quantum mechanical vibrational relaxation processes , 1998 .

[49]  Seogjoo J. Jang,et al.  Path integral centroid variables and the formulation of their exact real time dynamics , 1999 .

[50]  M. Klein,et al.  Centroid path integral molecular-dynamics studies of a para-hydrogen slab containing a lithium impurity , 1998 .

[51]  V. Filinov,et al.  Calculation of the feynman integrals by means of the Monte Carlo method , 1986 .

[52]  V. A. Apkarian,et al.  Semiclassical molecular dynamics computation of spontaneous light emission in the condensed phase: Resonance Raman spectra , 2001 .

[53]  K. Kinugawa Path integral centroid molecular dynamics study of the dynamic structure factors of liquid para-hydrogen , 1998 .

[54]  D. Manolopoulos,et al.  Semiclassical dynamics in up to 15 coupled vibrational degrees of freedom , 1997 .

[55]  H. Kleinert Path Integrals in Quantum Mechanics Statistics and Polymer Physics , 1990 .

[56]  P. Pechukas,et al.  Time-Dependent Semiclassical Scattering Theory. II. Atomic Collisions , 1969 .

[57]  J. Tully,et al.  Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2 , 1971 .

[58]  William H. Miller,et al.  The Semiclassical Initial Value Representation: A Potentially Practical Way for Adding Quantum Effects to Classical Molecular Dynamics Simulations , 2001 .

[59]  M. Ovchinnikov,et al.  Mixed-order semiclassical dynamics in coherent state representation: The connection between phonon sidebands and guest-host dynamics , 1998 .

[60]  Rafael Ramírez,et al.  PHASE-SPACE FORMULATION OF THERMODYNAMIC AND DYNAMICAL PROPERTIES OF QUANTUM PARTICLES , 1999 .

[61]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[62]  Haobin Wang,et al.  Generalized Filinov transformation of the semiclassical initial value representation , 2001 .

[63]  U. Smilansky,et al.  The hamiltonian path integrals and the uniform semiclassical approximations for the propagator , 1977 .

[64]  M. Klein,et al.  Centroid path integral molecular dynamics simulation of lithium para-hydrogen clusters , 1997 .

[65]  Qiang Shi,et al.  Quantum-mechanical reaction rate constants from centroid molecular dynamics simulations , 2001 .

[66]  Victor Pavlovich Maslov,et al.  Semi-classical approximation in quantum mechanics , 1981 .

[67]  K. Kay,et al.  Integral expressions for the semiclassical time‐dependent propagator , 1994 .

[68]  K. Kay Semiclassical propagation for multidimensional systems by an initial value method , 1994 .

[69]  M. Scully,et al.  Distribution functions in physics: Fundamentals , 1984 .

[70]  Qiang Shi,et al.  Centroid-based methods for calculating quantum reaction rate constants: Centroid sampling versus centroid dynamics , 2002 .

[71]  William H. Miller,et al.  Semiclassical theory of electronically nonadiabatic dynamics: results of a linearized approximation to the initial value representation , 1998 .

[72]  Bruce J. Berne,et al.  On the Simulation of Quantum Systems: Path Integral Methods , 1986 .

[73]  E. Kluk,et al.  Comparison of the propagation of semiclassical frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator , 1986 .

[74]  Pierre-Nicholas Roy,et al.  A Feynman path centroid dynamics approach for the computation of time correlation functions involving nonlinear operators , 2000 .

[75]  R. Ram'irez,et al.  The Schrödinger formulation of the Feynman path centroid density , 1999, cond-mat/9906318.

[76]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[77]  N. Makri,et al.  Quantum rates for a double well coupled to a dissipative bath: Accurate path integral results and comparison with approximate theories , 1994 .

[78]  P. J. Kuntz,et al.  Classical path surface‐hopping dynamics. I. General theory and illustrative trajectories , 1991 .

[79]  R. Kubo Statistical Physics II: Nonequilibrium Statistical Mechanics , 2003 .

[80]  W. Miller,et al.  Forward-backward initial value representation for semiclassical time correlation functions , 1999 .

[81]  W. Miller,et al.  Monte carlo integration with oscillatory integrands: implications for feynman path integration in real time , 1987 .

[82]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[83]  W. Miller,et al.  Semiclassical calculation of cumulative reaction probabilities , 1996 .

[84]  FEYNMAN EFFECTIVE CLASSICAL POTENTIAL IN THE SCHRODINGER FORMULATION , 1998, cond-mat/9906319.

[85]  W. Miller,et al.  Semiclassical calculation of Franck-Condon intensities for reactive systems , 1996 .

[86]  William H. Miller,et al.  On the semiclassical description of quantum coherence in thermal rate constants , 1998 .

[87]  William H. Miller,et al.  Classical S Matrix: Numerical Application to Inelastic Collisions , 1970 .

[88]  Jianshu Cao,et al.  The formulation of quantum statistical mechanics based on the Feynman path centroid density. III. Phase space formalism and analysis of centroid molecular dynamics , 1994 .

[89]  W. Miller,et al.  ‘‘Direct’’ calculation of quantum mechanical rate constants via path integral methods: Application to the reaction path Hamiltonian, with numerical test for the H+H2 reaction in 3D , 1985 .

[90]  W. Miller Generalization of the Linearized Approximation to the Semiclassical Initial Value Representation for Reactive Flux Correlation Functions , 1999 .

[91]  Nancy Makri,et al.  Influence functionals with semiclassical propagators in combined forward-backward time , 1999 .

[92]  Gregory A. Voth,et al.  A derivation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables , 1999 .

[93]  J. Shao,et al.  Forward-Backward Semiclassical Dynamics without Prefactors , 1999 .

[94]  Haobin Wang,et al.  Generalized forward–backward initial value representation for the calculation of correlation functions in complex systems , 2001 .

[95]  M. Thoss,et al.  Semiclassical description of nonadiabatic quantum dynamics: Application to the S1–S2 conical intersection in pyrazine , 2000 .

[96]  P. Rossky,et al.  Extracting rates of vibrational energy relaxation from centroid molecular dynamics , 2001 .

[97]  Eli Pollak,et al.  A new quantum transition state theory , 1998 .

[98]  Gregory A. Voth,et al.  Hyper-parallel algorithms for centroid molecular dynamics: application to liquid para-hydrogen , 1996 .

[99]  F. Grossmann TIME-DEPENDENT SEMICLASSICAL CALCULATION OF RESONANCE LIFETIMES , 1996 .

[100]  E. Pollak,et al.  Quantum transition state theory for dissipative systems , 2001 .

[101]  William H. Miller,et al.  Comment on: Semiclassical time evolution without root searches , 1991 .

[102]  D. Manolopoulos,et al.  A new semiclassical initial value method for Franck-Condon spectra , 1996 .

[103]  B. Berne,et al.  Quantum mechanical canonical rate theory: A new approach based on the reactive flux and numerical analytic continuation methods , 2000 .

[104]  Haobin Wang,et al.  Semiclassical study of electronically nonadiabatic dynamics in the condensed-phase: Spin-boson problem with Debye spectral density , 1999 .

[105]  G. D. Billing Quantum corrections to the classical path theory , 1993 .

[106]  B. Berne,et al.  Quantum Rate Constants from Short-Time Dynamics: An Analytic Continuation Approach† , 2001 .

[107]  Emilio Gallicchio,et al.  On the calculation of dynamical properties of solvated electrons by maximum entropy analytic continuation of path integral Monte Carlo data , 1996 .

[108]  E. Kluk,et al.  A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations , 1984 .