Computational Adequacy in an Elementary Topos

We place simple axioms on an elementary topos which suffice for it to provide a denotational model of call-by-value PCF with sum and product types. The model is synthetic in the sense that types are interpreted by their set-theoretic counterparts within the topos. The main result characterises when the model is computationally adequate with respect to the operational semantics of the programming language. We prove that computational adequacy holds if and only if the topos is 1-consistent (i.e. its internal logic validates only true Σ\(^{\rm 0}_{\rm 1}\)-sentences).

[1]  Axel Poigné,et al.  A Note on Inconsistencies Caused by Fixpoints in a Cartesian Closed Category , 1990, Theor. Comput. Sci..

[2]  Robert D. Tennent,et al.  Semantics of programming languages , 1991, Prentice Hall International Series in Computer Science.

[3]  Glynn Winskel,et al.  The formal semantics of programming languages - an introduction , 1993, Foundation of computing series.

[4]  J. Hyland First steps in synthetic domain theory , 1991 .

[5]  S. Lane Categories for the Working Mathematician , 1971 .

[6]  Alex K. Simpson,et al.  A uniform approach to domain theory in realizability models , 1997, Mathematical Structures in Computer Science.

[7]  Thomas Streicher,et al.  General synthetic domain theory – a logical approach , 1999 .

[8]  Alex K. Simpson,et al.  Axioms and (counter) examples in synthetic domain theory , 2000, Ann. Pure Appl. Log..

[9]  Bernhard Reus,et al.  Program verification in synthetic domain theory , 1995 .

[10]  Roy L. Crole,et al.  New Foundations for Fixpoint Computations: FIX-Hyperdoctrines and the FIX-Logic , 1992, Inf. Comput..

[11]  A. Pitts INTRODUCTION TO HIGHER ORDER CATEGORICAL LOGIC (Cambridge Studies in Advanced Mathematics 7) , 1987 .

[12]  Denise R. McLane-Davison,et al.  Lifting , 2016, Physiotherapy.

[13]  Marcelo P. Fiore Axiomatic domain theory in categories of partial maps , 1994 .

[14]  G. Winskel The formal semantics of programming languages , 1993 .

[15]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[16]  D. Scott Identity and existence in intuitionistic logic , 1979 .

[17]  D. Scott,et al.  Applications of sheaves , 1979 .

[18]  I. Moerdijk,et al.  Sheaves in geometry and logic: a first introduction to topos theory , 1992 .

[19]  Wesley Phoa,et al.  Effective domains and intrinsic structure , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[20]  Giuseppe Rosolini,et al.  Two models of synthetic domain theory , 1997 .

[21]  Giuseppe Rosolini,et al.  Extensional PERs , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[22]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[23]  Paul Taylor,et al.  The fixed point property in synthetic domain theory , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[24]  John R. Longley,et al.  Realizability toposes and language semantics , 1995 .

[25]  Giuseppe Rosolini,et al.  The category of cpos from a synthetic viewpoint , 1997, MFPS.

[26]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[27]  A. Simpson Recursive types in Kleisli categories , 1992 .

[28]  Gordon D. Plotkin,et al.  An Extension of Models of Axiomatic Domain Theory to Models of Synthetic Domain Theory , 1996, CSL.

[29]  Ieke Moerdijk,et al.  Algebraic set theory , 1995 .

[30]  Mamuka Jibladze,et al.  A presentation of the initial lift-algebra , 1997 .

[31]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[32]  Andrew M. Pitts,et al.  Category Theory and Computer Science , 1987, Lecture Notes in Computer Science.

[33]  J. V. Oosten,et al.  A combinatory algebra for sequential functionals of finite type , 1997 .

[34]  Philip S. Mulry,et al.  Categorical Fixed Point Semantics , 1990, Theor. Comput. Sci..