Genomics of the fungal kingdom: insights into eukaryotic biology.

The last decade has witnessed a revolution in the genomics of the fungal kingdom. Since the sequencing of the first fungus in 1996, the number of available fungal genome sequences has increased by an order of magnitude. Over 40 complete fungal genomes have been publicly released with an equal number currently being sequenced--representing the widest sampling of genomes from any eukaryotic kingdom. Moreover, many of these sequenced species form clusters of related organisms designed to enable comparative studies. These data provide an unparalleled opportunity to study the biology and evolution of this medically, industrially, and environmentally important kingdom. In addition, fungi also serve as model organisms for all eukaryotes. The available fungal genomic resource, coupled with the experimental tractability of the fungi, is accelerating research into the fundamental aspects of eukaryotic biology. We provide here an overview of available fungal genomes and highlight some of the biological insights that have been derived through their analysis. We also discuss insights into the fundamental cellular biology shared between fungi and other eukaryotic organisms.

[1]  B. Lowy New records of mushroom stones from Guatemala. , 1971, Mycologia.

[2]  Christopher J. Lee,et al.  A genomic view of alternative splicing , 2002, Nature Genetics.

[3]  J. Mullikin,et al.  The phusion assembler. , 2003, Genome research.

[4]  J. Wise,et al.  Evidence for Splice Site Pairing via Intron Definition in Schizosaccharomyces pombe , 2000, Molecular and Cellular Biology.

[5]  P. T. Magee,et al.  Effect of the Major Repeat Sequence on Chromosome Loss in Candida albicans , 2005, Eukaryotic Cell.

[6]  L. Hoang,et al.  Cryptococcus neoformans infections at Vancouver Hospital and Health Sciences Centre (1997-2002): epidemiology, microbiology and histopathology. , 2004, Journal of medical microbiology.

[7]  J. Beggs,et al.  Splicing goes global. , 2003, Trends in genetics : TIG.

[8]  M. Farman,et al.  Genetic and physical mapping of telomeres in the rice blast fungus, Magnaporthe grisea. , 1995, Genetics.

[9]  N. Gow,et al.  Candida albicans genome sequence: a platform for genomics in the absence of genetics , 2004, Genome Biology.

[10]  U. Kück,et al.  Transposons in filamentous fungi—facts and perspectives , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[11]  Cathryn J. Rehmeyer,et al.  The genome sequence of the rice blast fungus Magnaporthe grisea , 2005, Nature.

[12]  P. R. Scott,et al.  Plant disease: a threat to global food security. , 2005, Annual review of phytopathology.

[13]  H. Gehrig,et al.  Geosiphon pyriforme, a fungus forming endocytobiosis withNostoc (Cyanobacteria), is an ancestral member of the glomales: Evidence by SSU rRNA Analysis , 1996, Journal of Molecular Evolution.

[14]  P Bork,et al.  Inversions and the dynamics of eukaryotic gene order. , 2001, Trends in genetics : TIG.

[15]  B. Dujon,et al.  Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments , 2004, The EMBO journal.

[16]  J. Galagan,et al.  RIP: the evolutionary cost of genome defense. , 2004, Trends in genetics : TIG.

[17]  Michael Lynch,et al.  The evolution of spliceosomal introns. , 2002, Current opinion in genetics & development.

[18]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[19]  Ronald H. A. Plasterk,et al.  A genetic link between co-suppression and RNA interference in C. elegans , 2000, Nature.

[20]  P. Cook,et al.  Happy mapping: a proposal for linkage mapping the human genome. , 1989, Nucleic acids research.

[21]  T. G. Mitchell,et al.  Multiple gene genealogies reveal recent dispersion and hybridization in the human pathogenic fungus Cryptococcus neoformans , 2000, Molecular ecology.

[22]  Mario Stanke,et al.  Gene prediction with a hidden Markov model and a new intron submodel , 2003, ECCB.

[23]  B. Birren,et al.  Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae , 2004, Nature.

[24]  S. Salzberg,et al.  Interpolated Markov models for eukaryotic gene finding. , 1999, Genomics.

[25]  B. Barrell,et al.  The genome sequence of Schizosaccharomyces pombe , 2002, Nature.

[26]  E. Mauceli,et al.  Whole-genome sequence assembly for mammalian genomes: Arachne 2. , 2003, Genome research.

[27]  Charles J. Vaske,et al.  Gene prediction and verification in a compact genome with numerous small introns. , 2004, Genome research.

[28]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[29]  George Newport,et al.  A Human-Curated Annotation of the Candida albicans Genome , 2005, PLoS genetics.

[30]  S. Teutsch,et al.  Burden of aspergillosis-related hospitalizations in the United States. , 2000, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[31]  L. Madden,et al.  The threat of plant pathogens as weapons against U.S. crops. , 2003, Annual review of phytopathology.

[32]  Jessica Severin,et al.  Shotgun optical mapping of the entire Leishmania major Friedlin genome. , 2004, Molecular and biochemical parasitology.

[33]  D. Wicklow,et al.  The fungal community : its organization and role in the ecosystem , 1995 .

[34]  T. Taylor,et al.  The oldest fossil ascomycetes , 1999, Nature.

[35]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene finding in eukaryotes , 2004, Nucleic Acids Res..

[36]  Hans-Werner Mewes,et al.  Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. , 2003, Nucleic acids research.

[37]  Arlin Stoltzfus,et al.  Molecular evolution: Recent cases of spliceosomal intron gain? , 1998, Current Biology.

[38]  M. Swartz,et al.  Hospital-acquired infections: diseases with increasingly limited therapies. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Ian Korf,et al.  Integrating genomic homology into gene structure prediction , 2001, ISMB.

[40]  B. Barrell,et al.  Prevalence of small inversions in yeast gene order evolution. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  C. Napoli,et al.  Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. , 1990, The Plant cell.

[42]  S. Cawley,et al.  Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. , 2004, Genome research.

[43]  Phillip D Zamore,et al.  RNAi: nature abhors a double-strand. , 2002, Current opinion in genetics & development.

[44]  S. Y. Newell Estimating fungal biomass and productivity in decomposing litter , 1992 .

[45]  B. Dujon,et al.  Genome evolution in yeasts , 2004, Nature.

[46]  Paul Teng,et al.  Rice blast disease , 1996 .

[47]  J. Jurka,et al.  Microsatellites in different eukaryotic genomes: survey and analysis. , 2000, Genome research.

[48]  Gil Ast,et al.  How did alternative splicing evolve? , 2004, Nature Reviews Genetics.

[49]  G. Fink,et al.  Pseudogenes in yeast? , 1987, Cell.

[50]  J. Irelan,et al.  Transgene silencing of the al‐1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA‐DNA interactions or DNA methylation. , 1996, The EMBO journal.

[51]  Christina A. Cuomo,et al.  Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae , 2005, Nature.

[52]  M. Ryan,et al.  Fungal genetic resource centres and the genomic challenge. , 2004, Mycological research.

[53]  M. Moss Fungal biotechnology roundup , 1987 .

[54]  K. H. Wolfe,et al.  Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. , 2002, Genome research.

[55]  M. Schechtman Characterization of telomere DNA from Neurospora crassa. , 1990, Gene.

[56]  G. Fink,et al.  Ty elements transpose through an RNA intermediate , 1985, Cell.

[57]  Walter Gilbert,et al.  The pattern of intron loss. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Alexei Fedorov,et al.  Mystery of intron gain. , 2003, Genome research.

[59]  P. E. Thompson,et al.  Coccidioidomycosis , 2020, Definitions.

[60]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints , 2005, Nucleic Acids Res..

[61]  K. Paustian,et al.  Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients , 1999 .

[62]  S. Hedges,et al.  Molecular Evidence for the Early Colonization of Land by Fungi and Plants , 2001, Science.

[63]  Jill P Mesirov,et al.  Assembly of polymorphic genomes: algorithms and application to Ciona savignyi. , 2005, Genome research.

[64]  Jonathan E. Allen,et al.  Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii , 2002, Nature.

[65]  R. Dean,et al.  Gene discovery and gene expression in the rice blast fungus, Magnaporthe grisea: analysis of expressed sequence tags. , 2004, Molecular plant-microbe interactions : MPMI.

[66]  R. Metzenberg,et al.  Meiotic Silencing by Unpaired DNA , 2001, Cell.

[67]  N. Georgopapadakou,et al.  Antifungals: mechanism of action and resistance, established and novel drugs. , 1998, Current opinion in microbiology.

[68]  N. Talbot,et al.  Moving toward a systems biology approach to the study of fungal pathogenesis in the rice blast fungus Magnaporthe grisea. , 2005, Advances in applied microbiology.

[69]  R. Aramayo,et al.  Meiotic Transvection in Fungi , 1996, Cell.

[70]  Weixi Li,et al.  TERMINUS - Telomeric End-Read Mining IN Unassembled Sequences , 2005, Bioinform..

[71]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[72]  Jae-Hyuk Yu,et al.  Regulation of secondary metabolism in filamentous fungi. , 2005, Annual review of phytopathology.

[73]  Shane Gillespie,et al.  Attributable mortality of nosocomial candidemia, revisited. , 2003, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[74]  Joseph Heitman,et al.  Evolution of fungal sex chromosomes , 2004, Molecular microbiology.

[75]  Katherine H. Huang,et al.  Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78 , 2004, Nature Biotechnology.

[76]  L Grate,et al.  Test of intron predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. , 2000, Nucleic acids research.

[77]  W. Gilbert Why genes in pieces? , 1978, Nature.

[78]  V. Solovyev,et al.  Ab initio gene finding in Drosophila genomic DNA. , 2000, Genome research.

[79]  George Newport,et al.  The diploid genome sequence of Candida albicans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[80]  J. Castle,et al.  Genome-Wide Survey of Human Alternative Pre-mRNA Splicing with Exon Junction Microarrays , 2003, Science.

[81]  Ewan Birney,et al.  Automated generation of heuristics for biological sequence comparison , 2005, BMC Bioinformatics.

[82]  David L. Hawksworth,et al.  The fungal dimension of biodiversity: magnitude, significance, and conservation , 1991 .

[83]  J. Sambrook,et al.  Adenovirus amazes at Cold Spring Harbor , 1977, Nature.

[84]  J. Mattick Genome research , 1990, Nature.

[85]  E. Selker Premeiotic instability of repeated sequences in Neurospora crassa. , 1990, Annual review of genetics.

[86]  M. Berbee,et al.  Fungal Molecular Evolution: Gene Trees and Geologic Time , 2001 .

[87]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[88]  B. Birren,et al.  Patterns of Intron Gain and Loss in Fungi , 2004, PLoS biology.

[89]  C. Beck-Sague,et al.  Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. National Nosocomial Infections Surveillance System. , 1993, The Journal of infectious diseases.

[90]  P. Hardin,et al.  Circadian rhythms from multiple oscillators: lessons from diverse organisms , 2005, Nature Reviews Genetics.

[91]  B. Berger,et al.  ARACHNE: a whole-genome shotgun assembler. , 2002, Genome research.

[92]  Walter Gilbert,et al.  Complex early genes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Tobias Mourier,et al.  Eukaryotic Intron Loss , 2003, Science.

[94]  F. Metting Structure and physiological ecology of soil microbial communities. , 1992 .

[95]  Temple F. Smith,et al.  Prediction of gene structure. , 1992, Journal of molecular biology.

[96]  Peter R. Cook,et al.  Happy mapping: linkage mapping using a physical analogue of meiosis , 1993, Nucleic Acids Res..

[97]  R. Metzenberg,et al.  Meiotic silencing by unpaired DNA: properties, regulation and suppression. , 2002, Genetics.

[98]  P. Dyer,et al.  From genomics to post-genomics in Aspergillus. , 2004, Current opinion in microbiology.

[99]  E. Selker Repeat-induced gene silencing in fungi. , 2002, Advances in genetics.

[100]  R. Guigó,et al.  GeneID in Drosophila. , 2000, Genome research.

[101]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[102]  S. Kroken,et al.  Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Michael Freitag,et al.  Lessons from the Genome Sequence of Neurospora crassa: Tracing the Path from Genomic Blueprint to Multicellular Organism , 2004, Microbiology and Molecular Biology Reviews.

[104]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[105]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[106]  E. Mauceli,et al.  The genome sequence of the filamentous fungus Neurospora crassa , 2003, Nature.

[107]  M. Ares,et al.  Searching yeast intron data at Ares lab Web site. , 2002, Methods in enzymology.

[108]  David Botstein,et al.  Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Jonathan E. Allen,et al.  The Genome of the Basidiomycetous Yeast and Human Pathogen Cryptococcus neoformans , 2005, Science.