C-numerical ranges and C-numerical radii

In this paper, we give a brief survey on C-numerical ranges and C-numerical radii. New results are obtained and open problems are mentioned.

[1]  Chi-Kwong Li,et al.  c-convex matrices: characterizations, inclusion relations and normality , 1989 .

[2]  F. Hausdorff Der Wertvorrat einer Bilinearform , 1919 .

[3]  N. Tsing,et al.  A conjecture of marcus on the generalized numerical range , 1983 .

[4]  Yik-Hoi Au-Yeung,et al.  A remark on a conjecture of Marcus on the generalized numerical range , 1983, Glasgow Mathematical Journal.

[5]  Chi-Kwong Li,et al.  The C-convex matrices , 1987 .

[6]  Y. Poon Another proof of a result of Westwick , 1980 .

[7]  Circularity of the numerical range , 1994 .

[8]  Chi-Kwong Li,et al.  Linear Operators that Preserve the c-Numerical Range or Radius of Matrices , 1988 .

[9]  V. Pellegrini Numerical range preserving operators on a Banach algebra , 1975 .

[10]  Moshe Goldberg,et al.  Norm properties of C-numerical radii , 1979 .

[11]  W. Man C-numericai ranges and normality of matrices , 1992 .

[12]  Vasile I. Istratescu,et al.  Introduction to Linear Operator Theory , 1981 .

[13]  Moshe Goldberg,et al.  Elementary inclusion relations for generalized numerical ranges , 1977 .

[14]  Symmetry properties of higher numerical ranges , 1988 .

[15]  E. Straus,et al.  Multiplicativity factors for C-numerical radii , 1983 .

[16]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[17]  M. Marcus SOME COMBINATORIAL ASPECTS OF NUMERICAL RANGE * , 1979 .

[18]  Chi-Kwong Li,et al.  A generalized numerical range: the range of a constrained sesquilinear form , 1994 .

[19]  B. Tam A Simple proof of the Goldberg–Straus theorem on numerical radii , 1986, Glasgow Mathematical Journal.

[20]  O. Toeplitz Das algebraische Analogon zu einem Satze von Fejér , 1918 .

[21]  Nam-Kiu Tsing The constrained bilinear form and the C-numerical range , 1984 .

[22]  M. Marcus,et al.  Conditions for the generalized numerical range to be real , 1985 .

[23]  Charles R. Johnson NUMERICAL DETERMINATION OF THE FIELD OF VALUES OF A GENERAL COMPLEX MATRIX , 1978 .

[24]  William Watkins,et al.  Invariants of linear maps on matrix algebras , 1978 .

[25]  Chi-Kwong Li Linear operators preserving the numerical radius of matrices , 1987 .

[26]  Nondifferentiabie points of ∂W c (A) , 1986 .

[27]  R. C. Thompson,et al.  Research problem the matrix numerical range , 1987 .

[28]  Tom Brylawski,et al.  An Affine Representation for Transversal Geometries , 1975 .

[29]  W. Man The invarianee of C-numerical rangeC-numericai radius, and their dual problems , 1991 .

[30]  Chi-Kwong Li,et al.  Norms that are invariant under unitary similarities and the C-numerical radii , 1989 .

[31]  Yik-Hoi Au-Yeung,et al.  3×3 Orthostochastic matrices and the convexity of generalized numerical ranges , 1979 .

[32]  N. Tsing On the shape of the generalized numerical ranges , 1981 .

[33]  Chi-Kwong Li,et al.  G-invariant norms and G(c)-radii , 1991 .

[34]  P. Halmos A Hilbert Space Problem Book , 1967 .

[35]  E. Straus,et al.  Operator norms, multiplicativity factors, and C-numerical radii , 1982 .

[36]  Inequalities relating unitarily invariant norms and the numerical radius , 1988 .

[37]  Chi-Kwong Li,et al.  Duality between some linear preservers problems: the invariance of the c-numerical range, the c-numerical radius and certain matrix sets , 1988 .

[38]  Chi-Kwong Li On the higher numerical radius and spectral norm , 1986 .

[39]  Charles R. Johnson Normality and the numerical range , 1976 .

[40]  Chi-Kwong Li,et al.  Joint Ranges of Hermitian Matrices and Simultaneous Diagonalization , 1991 .

[41]  M. Goldberg On certain finite dimensional numerical ranges and numerical radii , 1979 .

[42]  Some equality conditions with respect to the dual norm of the numerical radius , 1993 .

[43]  Chi-Kwong Li Inequalities relating norms invariant under unitary similarities , 1991 .

[44]  Chi-Kwong Li Linear operators preserving the higher numerical radius of matrices , 1987 .

[45]  F D Murnaghan,et al.  On the Field of Values of a Square Matrix. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[46]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[47]  W. Man The convexity of the generalized numerical range , 1987 .

[48]  M. Marcus,et al.  Computer generated numerical ranges and some resulting theorems , 1987 .

[49]  M. Marcus Finite dimensional multilinear algebra , 1973 .

[50]  M. Marcus,et al.  Nondifferentiable boundary points of the higher numerical range , 1978 .

[51]  R. Westwick,et al.  A theorem on numerical range , 1975 .

[52]  M. Marcus,et al.  Normality and the Higher Numerical Range , 1978, Canadian Journal of Mathematics.

[53]  W. Donoghue,et al.  On the numerical range of a bounded operator. , 1957 .

[54]  Leiba Rodman,et al.  Numerical Range of Matrix Polynomials , 1994, SIAM J. Matrix Anal. Appl..

[55]  M. Marcus,et al.  Three elementary proofs of the goldberg-straus theorem on numerical radii , 1982 .

[56]  Chi-Kwong Li The c-spectralc-radial and c-convex matrices , 1986 .