C-numerical ranges and C-numerical radii
暂无分享,去创建一个
[1] Chi-Kwong Li,et al. c-convex matrices: characterizations, inclusion relations and normality , 1989 .
[2] F. Hausdorff. Der Wertvorrat einer Bilinearform , 1919 .
[3] N. Tsing,et al. A conjecture of marcus on the generalized numerical range , 1983 .
[4] Yik-Hoi Au-Yeung,et al. A remark on a conjecture of Marcus on the generalized numerical range , 1983, Glasgow Mathematical Journal.
[5] Chi-Kwong Li,et al. The C-convex matrices , 1987 .
[6] Y. Poon. Another proof of a result of Westwick , 1980 .
[7] Circularity of the numerical range , 1994 .
[8] Chi-Kwong Li,et al. Linear Operators that Preserve the c-Numerical Range or Radius of Matrices , 1988 .
[9] V. Pellegrini. Numerical range preserving operators on a Banach algebra , 1975 .
[10] Moshe Goldberg,et al. Norm properties of C-numerical radii , 1979 .
[11] W. Man. C-numericai ranges and normality of matrices , 1992 .
[12] Vasile I. Istratescu,et al. Introduction to Linear Operator Theory , 1981 .
[13] Moshe Goldberg,et al. Elementary inclusion relations for generalized numerical ranges , 1977 .
[14] Symmetry properties of higher numerical ranges , 1988 .
[15] E. Straus,et al. Multiplicativity factors for C-numerical radii , 1983 .
[16] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[17] M. Marcus. SOME COMBINATORIAL ASPECTS OF NUMERICAL RANGE * , 1979 .
[18] Chi-Kwong Li,et al. A generalized numerical range: the range of a constrained sesquilinear form , 1994 .
[19] B. Tam. A Simple proof of the Goldberg–Straus theorem on numerical radii , 1986, Glasgow Mathematical Journal.
[20] O. Toeplitz. Das algebraische Analogon zu einem Satze von Fejér , 1918 .
[21] Nam-Kiu Tsing. The constrained bilinear form and the C-numerical range , 1984 .
[22] M. Marcus,et al. Conditions for the generalized numerical range to be real , 1985 .
[23] Charles R. Johnson. NUMERICAL DETERMINATION OF THE FIELD OF VALUES OF A GENERAL COMPLEX MATRIX , 1978 .
[24] William Watkins,et al. Invariants of linear maps on matrix algebras , 1978 .
[25] Chi-Kwong Li. Linear operators preserving the numerical radius of matrices , 1987 .
[26] Nondifferentiabie points of ∂W c (A) , 1986 .
[27] R. C. Thompson,et al. Research problem the matrix numerical range , 1987 .
[28] Tom Brylawski,et al. An Affine Representation for Transversal Geometries , 1975 .
[29] W. Man. The invarianee of C-numerical rangeC-numericai radius, and their dual problems , 1991 .
[30] Chi-Kwong Li,et al. Norms that are invariant under unitary similarities and the C-numerical radii , 1989 .
[31] Yik-Hoi Au-Yeung,et al. 3×3 Orthostochastic matrices and the convexity of generalized numerical ranges , 1979 .
[32] N. Tsing. On the shape of the generalized numerical ranges , 1981 .
[33] Chi-Kwong Li,et al. G-invariant norms and G(c)-radii , 1991 .
[34] P. Halmos. A Hilbert Space Problem Book , 1967 .
[35] E. Straus,et al. Operator norms, multiplicativity factors, and C-numerical radii , 1982 .
[36] Inequalities relating unitarily invariant norms and the numerical radius , 1988 .
[37] Chi-Kwong Li,et al. Duality between some linear preservers problems: the invariance of the c-numerical range, the c-numerical radius and certain matrix sets , 1988 .
[38] Chi-Kwong Li. On the higher numerical radius and spectral norm , 1986 .
[39] Charles R. Johnson. Normality and the numerical range , 1976 .
[40] Chi-Kwong Li,et al. Joint Ranges of Hermitian Matrices and Simultaneous Diagonalization , 1991 .
[41] M. Goldberg. On certain finite dimensional numerical ranges and numerical radii , 1979 .
[42] Some equality conditions with respect to the dual norm of the numerical radius , 1993 .
[43] Chi-Kwong Li. Inequalities relating norms invariant under unitary similarities , 1991 .
[44] Chi-Kwong Li. Linear operators preserving the higher numerical radius of matrices , 1987 .
[45] F D Murnaghan,et al. On the Field of Values of a Square Matrix. , 1932, Proceedings of the National Academy of Sciences of the United States of America.
[46] I. Olkin,et al. Inequalities: Theory of Majorization and Its Applications , 1980 .
[47] W. Man. The convexity of the generalized numerical range , 1987 .
[48] M. Marcus,et al. Computer generated numerical ranges and some resulting theorems , 1987 .
[49] M. Marcus. Finite dimensional multilinear algebra , 1973 .
[50] M. Marcus,et al. Nondifferentiable boundary points of the higher numerical range , 1978 .
[51] R. Westwick,et al. A theorem on numerical range , 1975 .
[52] M. Marcus,et al. Normality and the Higher Numerical Range , 1978, Canadian Journal of Mathematics.
[53] W. Donoghue,et al. On the numerical range of a bounded operator. , 1957 .
[54] Leiba Rodman,et al. Numerical Range of Matrix Polynomials , 1994, SIAM J. Matrix Anal. Appl..
[55] M. Marcus,et al. Three elementary proofs of the goldberg-straus theorem on numerical radii , 1982 .
[56] Chi-Kwong Li. The c-spectralc-radial and c-convex matrices , 1986 .