Chapter 4 - The Curry-Howard isomorphism

[1]  Jean-Yves Girard From foundations to ludics , 2003, Bull. Symb. Log..

[2]  Robert L. Constable,et al.  The Structure of Nuprl’s Type Theory , 1997 .

[3]  J. Lambek The Mathematics of Sentence Structure , 1958 .

[4]  H B Curry,et al.  Functionality in Combinatory Logic. , 1934, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Michel Parigot Recursive Programming with Proofs , 1992, Theor. Comput. Sci..

[6]  Robert L. Constable,et al.  Constructive Mathematics and Automatic Program Writers , 1970, IFIP Congress.

[7]  Wil Dekkers Inhabitation of Types in the Simply Typed Lambda Calculus , 1995, Inf. Comput..

[8]  Giuseppe Longo,et al.  Categories, types and structures - an introduction to category theory for the working computer scientist , 1991, Foundations of computing.

[9]  Hendrik Pieter Barendregt,et al.  Completeness of the propositions-as-types interpretation of intuitionistic logic into illative combinatory logic , 1998, Journal of Symbolic Logic.

[10]  Bengt Nordström,et al.  Programming in Martin-Löf's Type Theory , 1990 .

[11]  Haskell B. Curry,et al.  The combinatory foundations of mathematical logic , 1942, Journal of Symbolic Logic.

[12]  de Ng Dick Bruijn,et al.  A survey of the project Automath , 1980 .

[13]  Mariangiola Dezani-Ciancaglini,et al.  The "Relevance" of Intersection and Union Types , 1997, Notre Dame J. Formal Log..

[14]  Ralph Matthes,et al.  Short proofs of normalization for the simply- typed λ-calculus, permutative conversions and Gödel's T , 2003, Arch. Math. Log..

[15]  Michael Moortgat,et al.  Categorial Type Logics , 1997, Handbook of Logic and Language.

[16]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[17]  Pierangelo Miglioli,et al.  Characterization of Programs and Their Synthesis from a Formalized Theory , 1973, MFCS.

[18]  Vítezslav Svejdar On the polynomial-space completeness of intuitionistic propositional logic , 2003, Arch. Math. Log..

[19]  Michael J. C. Gordon,et al.  From LCF to HOL: a short history , 2000, Proof, Language, and Interaction.

[20]  de Ng Dick Bruijn On the roles of types in mathematics , 1995 .

[21]  W. Buszkowski The Logic of Types , 1987 .

[22]  Jonathan P. Seldin,et al.  CURRY’S ANTICIPATION OF THE TYPES USED IN PROGRAMMING LANGUAGES , 2002 .

[23]  Atsushi Ohori,et al.  A Curry-Howard Isomorphism for Compilation and Program Execution , 1999, TLCA.

[24]  Herman Geuvers,et al.  Proof-Assistants Using Dependent Type Systems , 2001, Handbook of Automated Reasoning.

[25]  Roland Carl Backhouse,et al.  Do-it-yourself type theory , 1989, Formal Aspects of Computing.

[26]  Jean Gallier,et al.  Constructive Logics Part I: A Tutorial on Proof Systems and Typed gamma-Calculi , 1993, Theor. Comput. Sci..

[27]  Mariangiola Dezani-Ciancaglini,et al.  Intersection and Union Types: Syntax and Semantics , 1995, Inf. Comput..

[28]  Marek Zaionc Mechanical procedure for proof construction via closed terms in typed λ calculus , 2004, Journal of Automated Reasoning.

[29]  H. B. Curry Some Properties of Equality and Implication in Combinatory Logic , 1934 .

[30]  René David,et al.  A short proof of the strong normalization of classical natural deduction with disjunction , 2003, Journal of Symbolic Logic.

[31]  Jan M. Smith,et al.  Martin-Löf's type theory , 2001, LICS 2001.

[32]  Helmut Schwichtenberg,et al.  Strict Functionals for Termination Proofs , 1995, TLCA.

[33]  Helmut Schwichtenberg,et al.  Minimal logic for computable functions , 1993 .

[34]  Jean-Yves Girard,et al.  Locus Solum: From the rules of logic to the logic of rules , 2001, Mathematical Structures in Computer Science.

[35]  Thierry Coquand On the analogy between propositions and types , 1986 .

[36]  Per Martin-Löf,et al.  Constructive mathematics and computer programming , 1984 .

[37]  R. Hindley,et al.  History of Lambda-calculus and Combinatory Logic , 2006 .

[38]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[39]  Atsushi Ohori,et al.  The Logical Abstract Machine: A Curry-Howard Isomorphism for Machine Code , 1999, Fuji International Symposium on Functional and Logic Programming.

[40]  Walter Felscher Dialogues as a Foundation for Intuitionistic Logic , 2002 .

[41]  Helmut Schwichtenberg,et al.  Refined program extraction form classical proofs , 2002, Ann. Pure Appl. Log..

[42]  W. Tait Infinitely Long Terms of Transfinite Type , 1965 .

[43]  A. N. Prior,et al.  Notes on the axiomatics of the propositional calculus , 1963, Notre Dame J. Formal Log..

[44]  Rp Rob Nederpelt,et al.  Selected papers on Automath , 1994 .

[45]  H. Läuchli An Abstract Notion of Realizability for Which Intuitionistic Predicate Calculus is Complete , 1970 .

[46]  Anne Sjerp Troelstra,et al.  From Constructivism to Computer Science , 1999, Theor. Comput. Sci..

[47]  Stefano Berardi,et al.  A Symmetric Lambda Calculus for Classical Program Extraction , 1994, Inf. Comput..

[48]  Betti Venneri,et al.  Intersection Types as Logical Formulae , 1994, J. Log. Comput..

[49]  Robert L. Constable,et al.  Programs as Proofs: A Synopsis , 1982, Inf. Process. Lett..

[50]  Zohar Manna,et al.  Toward automatic program synthesis , 1971, Symposium on Semantics of Algorithmic Languages.

[51]  de Ng Dick Bruijn,et al.  The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .

[52]  J.F.A.K. van Benthem,et al.  Language in Action: Categories, Lambdas and Dynamic Logic , 1997 .

[53]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[54]  Chris Goad,et al.  Proofs as Description of Computation , 1980, CADE.

[55]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[56]  Christine Paulin-Mohring,et al.  Extracting ω's programs from proofs in the calculus of constructions , 1989, POPL '89.

[57]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[58]  Michel Parigot,et al.  Programming with Proofs , 1990, J. Inf. Process. Cybern..

[59]  Peter Dybjer,et al.  A general formulation of simultaneous inductive-recursive definitions in type theory , 2000, Journal of Symbolic Logic.

[60]  Robert L. Constable,et al.  Chapter X - Types in Logic, Mathematics and Programming , 1998 .

[61]  Jean-Louis Krivine,et al.  Typed lambda-calculus in classical Zermelo-Frænkel set theory , 2001, Arch. Math. Log..

[62]  Richard Statman,et al.  Intuitionistic Propositional Logic is Polynomial-Space Complete , 1979, Theor. Comput. Sci..

[63]  Kuno Lorenz,et al.  Dialogspiele als Semantische Grundlage von Logikkalkülen , 1968 .

[64]  P. Martin-Löf An Intuitionistic Theory of Types: Predicative Part , 1975 .