Gravitational Lensing Accuracy Testing 2010 (GREAT10) Challenge Handbook

GRavitational lEnsing Accuracy Testing 2010 (GREAT10) is a public image analysis challenge aimed at the development of algorithms to analyze astronomical images. Specifically, the challenge is to measure varying image distortions in the presence of a variable convolution kernel, pixelization and noise. This is the second in a series of challenges set to the astronomy, computer science and statistics communities, providing a structured environment in which methods can be improved and tested in preparation for planned astronomical surveys. GREAT10 extends upon previous work by introducing variable fields into the challenge. The "Galaxy Challenge" involves the precise measurement of galaxy shape distortions, quantified locally by two parameters called shear, in the presence of a known convolution kernel. Crucially, the convolution kernel and the simulated gravitational lensing shape distortion both now vary as a function of position within the images, as is the case for real data. In addition, we introduce the "Star Challenge" that concerns the reconstruction of a variable convolution kernel, similar to that in a typical astronomical observation. This document details the GREAT10 Challenge for potential participants. Continually updated information is also available from www.greatchallenges.info.

[1]  A. Labeyrie Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images , 1970 .

[2]  K. Knox,et al.  Recovery of Images from Atmospherically Degraded Short-Exposure Photographs , 1974 .

[3]  Timothy J. Schulz,et al.  Multiframe blind deconvolution of astronomical images , 1993 .

[4]  Deepa Kundur,et al.  Blind Image Deconvolution , 2001 .

[5]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[6]  Dianne P. O'Leary,et al.  Restoring Images Degraded by Spatially Variant Blur , 1998, SIAM J. Sci. Comput..

[7]  G. M. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001 .

[8]  J. Kalirai The CFHT open star cluster survey , 2001 .

[9]  Bonn,et al.  Analysis of two-point statistics of cosmic shear - I. Estimators and covariances , 2002, astro-ph/0206182.

[10]  T. Theuns,et al.  Discriminating Weak Lensing from Intrinsic Spin Correlations Using the Curl-Gradient Decomposition , 2000, astro-ph/0012336.

[11]  Harvey B. Richer,et al.  The CFHT Open Star Cluster Survey. IV. Two Rich, Young Open Star Clusters: NGC 2168 (M35) and NGC 2323 (M50) , 2003, astro-ph/0306241.

[12]  Fionn Murtagh,et al.  Fast communication , 2002 .

[13]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[14]  A. Réfrégier Weak Gravitational Lensing by Large-Scale Structure , 2003, astro-ph/0307212.

[15]  Bhuvnesh Jain,et al.  Principal Component Analysis of PSF Variation in Weak Lensing Surveys , 2004 .

[16]  R. Massey,et al.  Polar Shapelets , 2004, astro-ph/0408445.

[17]  D. Bacon,et al.  Galaxy-Galaxy Flexion: Weak Lensing to Second Order , 2004, astro-ph/0406376.

[18]  Jason Rhodes,et al.  Modelling and Correcting the Time-Dependent ACS PSF , 2005, astro-ph/0512170.

[19]  Dealing with systematics in cosmic shear studies: New results from the VIRMOS-Descart survey , 2004, astro-ph/0406468.

[20]  Stuart Jefferies,et al.  A computational method for the restoration of images with an unknown, spatially-varying blur. , 2006, Optics express.

[21]  GaaP: PSF- and aperture-matched photometry using shapelets , 2006, astro-ph/0610606.

[22]  H. Hoekstra,et al.  The Shear Testing Programme – I. Weak lensing analysis of simulated ground-based observations , 2005, astro-ph/0506112.

[23]  E- and B-mode mixing from incomplete knowledge of the shear correlation , 2006, astro-ph/0604520.

[24]  H. Hoekstra,et al.  Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.

[25]  R. Ellis,et al.  The Shear TEsting Programme 2: Factors affecting high precision weak lensing analyses , 2006, astro-ph/0608643.

[26]  Adam Amara,et al.  Systematic bias in cosmic shear: extending the Fisher matrix , 2007, 0710.5171.

[27]  Yannick Mellier,et al.  The Stability of the Point-Spread Function of the Advanced Camera for Surveys on the Hubble Space Telescope and Implications for Weak Gravitational Lensing* , 2007 .

[28]  T. Kitching,et al.  Bayesian galaxy shape measurement for weak lensing surveys – I. Methodology and a fast-fitting algorithm , 2007, 0708.2340.

[29]  A. Amara,et al.  Point spread function calibration requirements for dark energy from cosmic shear , 2007, 0711.4886.

[30]  Bayesian Galaxy Shape Measurement for Weak Lensing Surveys -II. Application to Simulations , 2008, 0802.1528.

[31]  R. Massey,et al.  Combined analysis of weak lensing and X-ray blind surveys , 2007, 0712.3293.

[32]  P. Schneider,et al.  Analysis of two-point statistics of cosmic shear III. Covariances of shear measures made easy , 2007, 0708.0387.

[33]  P. Schechter,et al.  Telescope Optics and Weak Lensing: PSF Patterns due to Low Order Aberrations , 2008, 0810.0027.

[34]  John Shawe-Taylor,et al.  HANDBOOK FOR THE GREAT08 CHALLENGE: AN IMAGE ANALYSIS COMPETITION FOR COSMOLOGICAL LENSING , 2008, 0802.1214.

[35]  M. Bethge,et al.  Results of the GREAT08 Challenge?: an image analysis competition for cosmological lensing: Results o , 2009, 0908.0945.

[36]  S. Paulin-Henriksson,et al.  Optimal point spread function modeling for weak lensing: complexity and sparsity , 2009 .

[37]  Seungyong Lee,et al.  Fast motion deblurring , 2009, ACM Trans. Graph..

[38]  Yannick Mellier,et al.  Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.

[39]  B. Rowe Improving PSF modelling for weak gravitational lensing using new methods in model selection , 2009, 0904.3056.

[40]  S. Seitz,et al.  Bias-free shear estimation using artificial neural networks , 2010, 1002.0838.

[41]  Gary M. Bernstein,et al.  Shape measurement biases from underfitting and ellipticity gradients , 2010, 1001.2333.

[42]  Ideal Cosmic Shear Estimators Do Not Exist , 2010 .

[43]  Bernhard Schölkopf,et al.  Efficient filter flow for space-variant multiframe blind deconvolution , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  M. Bartelmann,et al.  Weak gravitational lensing with deimos , 2010, 1008.1076.

[45]  Jean-Luc Starck,et al.  Weak Gravitational Lensing , 2012 .