A Primer on Coorbit Theory -- From Basics to Recent Developments

Coorbit theory is a powerful machinery that constructs a family of Banach spaces, the socalled coorbit spaces, from well-behaved unitary representations of locally compact groups. A core feature of coorbit spaces is that they can be discretized in a way that reflects the geometry of the underlying locally compact group. Many established function spaces such as modulation spaces, Besov spaces, Sobolev-Shubin spaces, and shearlet spaces are examples of coorbit spaces. The goal of this survey is to give an overview of coorbit theory with the aim of presenting the main ideas in an accessible manner. Coorbit theory is generally seen as a complicated theory, filled with both technicalities and conceptual difficulties. Faced with this obstacle, we feel obliged to convince the reader of the theory’s elegance. As such, this survey is a showcase of coorbit theory and should be treated as a stepping stone to more complete sources.

[1]  G. Folland A course in abstract harmonic analysis , 1995 .

[2]  Gabriele Steidl,et al.  Frames and Coorbit Theory on Homogeneous Spaces with a Special Guidance on the Sphere , 2007 .

[3]  K. Grōchenig,et al.  New atomic decompositons for Bergman spaces on the unit ball , 2015, 1504.00381.

[4]  Embeddings of shearlet coorbit spaces into Sobolev spaces , 2019, International Journal of Wavelets, Multiresolution and Information Processing.

[5]  M. Fornasier,et al.  Generalized coorbit theory, Banach frames, and the relation to α‐modulation spaces , 2008 .

[6]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Holger Rauhut Coorbit space theory for quasi-Banach spaces , 2005 .

[8]  Eirik Berge Interpolation in wavelet spaces and the HRT-conjecture , 2020, 2005.04964.

[9]  F. Bruhat Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes $p$-adiques , 1961 .

[10]  F. Voigtlaender Embeddings of Decomposition Spaces , 2016, Memoirs of the American Mathematical Society.

[11]  Images of the Continuous Wavelet Transform , 2014 .

[12]  David L. Donoho,et al.  Curvelets, multiresolution representation, and scaling laws , 2000, SPIE Optics + Photonics.

[13]  Gitta Kutyniok,et al.  Introduction to Shearlets , 2012 .

[14]  H. Feichtinger On a new Segal algebra , 1981 .

[15]  Mohamed-Jalal Fadili,et al.  Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal , 2008, IEEE Transactions on Image Processing.

[16]  Gabriele Steidl,et al.  The Continuous Shearlet Transform in Arbitrary Space Dimensions , 2009, Structured Decompositions and Efficient Algorithms.

[17]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[18]  Peter Balazs,et al.  Kernel theorems in coorbit theory , 2019, Transactions of the American Mathematical Society, Series B.

[19]  O. Christensen Atomic Decomposition via Projective Group Representations , 1996 .

[20]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[21]  Christina Gloeckner Foundations Of Time Frequency Analysis , 2016 .

[22]  Edwin Hewitt,et al.  Structure of topological groups, integration theory, group representations , 1963 .

[23]  K. Grōchenig New Function Spaces Associated to Representations of Nilpotent Lie Groups and Generalized Time-Frequency Analysis , 2020, 2007.04615.

[24]  Walter Piston,et al.  Principles of harmonic analysis , 1983 .

[25]  Elke Wilczok,et al.  New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform , 2000, Documenta Mathematica.

[26]  H. Feichtinger,et al.  A unified approach to atomic decompositions via integrable group representations , 1988 .

[28]  A. Grossmann,et al.  Transforms associated to square integrable group representations. I. General results , 1985 .

[29]  Demetrio Labate,et al.  Harmonic and Applied Analysis - From Groups to Signals , 2015, Harmonic and Applied Analysis.

[30]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[31]  F. Luef,et al.  A large scale approach to decomposition spaces , 2019, Studia Mathematica.

[32]  Wang-Q Lim,et al.  Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.

[33]  D. Labate,et al.  Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators , 2006 .

[34]  Calvin C. Moore,et al.  On the regular representation of a nonunimodular locally compact group , 1976 .

[35]  On the Atomic Decomposition of Coorbit Spaces with Non-Integrable Kernel , 2018, 1807.06380.

[36]  Michael Ruzhansky,et al.  Heisenberg-Modulation Spaces at the Crossroads of Coorbit Theory and Decomposition Space Theory. , 2018, 1812.07876.

[37]  Gitta Kutyniok,et al.  The Uncertainty Principle Associated with the Continuous Shearlet Transform , 2008, Int. J. Wavelets Multiresolution Inf. Process..

[38]  M. W. Wong Wavelet transforms and localization operators , 2002 .

[39]  Weichao Guo,et al.  Full characterization of the embedding relations between α-modulation spaces , 2018 .

[40]  H. Führ Abstract Harmonic Analysis of Continuous Wavelet Transforms , 2005 .

[41]  Hans G. Feichtinger,et al.  Embedding theorems for decomposition spaces with applications to wavelet coorbit spaces , 2016 .

[42]  H. Feichtinger,et al.  Coorbit Theory and Bergman Spaces , 2014 .

[43]  M. Pap Properties of the voice transform of the Blaschke group and connections with atomic decomposition results in the weighted Bergman spaces , 2012 .

[44]  F. Voigtlaender,et al.  On dual molecules and convolution-dominated operators , 2020, 2001.09609.

[45]  Karlheinz Gröchenig,et al.  Time-Frequency Analysis of Sjöstrand's Class , 2004 .

[46]  C. Heil An Introduction to Weighted Wiener Amalgams , 2003 .

[47]  Peter G. Casazza,et al.  FRAMES FOR BANACH SPACES , 1977 .

[48]  Embeddings of Decomposition Spaces into Sobolev and BV Spaces , 2016, 1601.02201.

[49]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[50]  Gabriele Steidl,et al.  Shearlet Coorbit Spaces: Compactly Supported Analyzing Shearlets, Traces and Embeddings , 2011 .

[51]  M. Schäfer,et al.  General Coorbit Space Theory for Quasi-Banach Spaces and Inhomogeneous Function Spaces with Variable Smoothness and Integrability , 2015, 1506.07346.

[52]  F. Voigtlaender,et al.  Wavelet Coorbit Spaces viewed as Decomposition Spaces , 2014, 1404.4298.

[53]  M. Fornasier,et al.  Continuous Frames, Function Spaces, and the Discretization Problem , 2004, math/0410571.

[54]  A. Robert Introduction to the Representation Theory of Compact and Locally Compact Groups , 1983 .

[55]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[56]  FA ] 2 6 A ug 2 01 9 α-modulation spaces for step two stratified Lie groups , 2019 .

[57]  Jordy Timo van Velthoven,et al.  Coorbit spaces associated to integrably admissible dilation groups , 2019, 1903.11528.

[58]  R. Howe On the role of the Heisenberg group in harmonic analysis , 1980 .

[59]  V. Paulsen,et al.  An Introduction to the Theory of Reproducing Kernel Hilbert Spaces , 2016 .

[60]  H. Feichtinger,et al.  Banach Spaces of Distributions Defined by Decomposition Methods, I , 1985 .

[61]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions. Part II , 1989 .

[62]  Michael Ruzhansky,et al.  Quantization on Nilpotent Lie Groups , 2016 .

[63]  Gabriele Steidl,et al.  Shearlet coorbit spaces and associated Banach frames , 2009 .

[64]  A. Kirillov Lectures on the Orbit Method , 2004 .

[65]  Mads S. Jakobsen On a (No Longer) New Segal Algebra: A Review of the Feichtinger Algebra , 2016, 1608.04566.