A Primer on Coorbit Theory -- From Basics to Recent Developments
暂无分享,去创建一个
[1] G. Folland. A course in abstract harmonic analysis , 1995 .
[2] Gabriele Steidl,et al. Frames and Coorbit Theory on Homogeneous Spaces with a Special Guidance on the Sphere , 2007 .
[3] K. Grōchenig,et al. New atomic decompositons for Bergman spaces on the unit ball , 2015, 1504.00381.
[4] Embeddings of shearlet coorbit spaces into Sobolev spaces , 2019, International Journal of Wavelets, Multiresolution and Information Processing.
[5] M. Fornasier,et al. Generalized coorbit theory, Banach frames, and the relation to α‐modulation spaces , 2008 .
[6] E. Candès,et al. Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[7] Holger Rauhut. Coorbit space theory for quasi-Banach spaces , 2005 .
[8] Eirik Berge. Interpolation in wavelet spaces and the HRT-conjecture , 2020, 2005.04964.
[9] F. Bruhat. Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes $p$-adiques , 1961 .
[10] F. Voigtlaender. Embeddings of Decomposition Spaces , 2016, Memoirs of the American Mathematical Society.
[11] Images of the Continuous Wavelet Transform , 2014 .
[12] David L. Donoho,et al. Curvelets, multiresolution representation, and scaling laws , 2000, SPIE Optics + Photonics.
[13] Gitta Kutyniok,et al. Introduction to Shearlets , 2012 .
[14] H. Feichtinger. On a new Segal algebra , 1981 .
[15] Mohamed-Jalal Fadili,et al. Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal , 2008, IEEE Transactions on Image Processing.
[16] Gabriele Steidl,et al. The Continuous Shearlet Transform in Arbitrary Space Dimensions , 2009, Structured Decompositions and Efficient Algorithms.
[17] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[18] Peter Balazs,et al. Kernel theorems in coorbit theory , 2019, Transactions of the American Mathematical Society, Series B.
[19] O. Christensen. Atomic Decomposition via Projective Group Representations , 1996 .
[20] H. Feichtinger,et al. Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .
[21] Christina Gloeckner. Foundations Of Time Frequency Analysis , 2016 .
[22] Edwin Hewitt,et al. Structure of topological groups, integration theory, group representations , 1963 .
[23] K. Grōchenig. New Function Spaces Associated to Representations of Nilpotent Lie Groups and Generalized Time-Frequency Analysis , 2020, 2007.04615.
[24] Walter Piston,et al. Principles of harmonic analysis , 1983 .
[25] Elke Wilczok,et al. New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform , 2000, Documenta Mathematica.
[26] H. Feichtinger,et al. A unified approach to atomic decompositions via integrable group representations , 1988 .
[28] A. Grossmann,et al. Transforms associated to square integrable group representations. I. General results , 1985 .
[29] Demetrio Labate,et al. Harmonic and Applied Analysis - From Groups to Signals , 2015, Harmonic and Applied Analysis.
[30] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[31] F. Luef,et al. A large scale approach to decomposition spaces , 2019, Studia Mathematica.
[32] Wang-Q Lim,et al. Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.
[33] D. Labate,et al. Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators , 2006 .
[34] Calvin C. Moore,et al. On the regular representation of a nonunimodular locally compact group , 1976 .
[35] On the Atomic Decomposition of Coorbit Spaces with Non-Integrable Kernel , 2018, 1807.06380.
[36] Michael Ruzhansky,et al. Heisenberg-Modulation Spaces at the Crossroads of Coorbit Theory and Decomposition Space Theory. , 2018, 1812.07876.
[37] Gitta Kutyniok,et al. The Uncertainty Principle Associated with the Continuous Shearlet Transform , 2008, Int. J. Wavelets Multiresolution Inf. Process..
[38] M. W. Wong. Wavelet transforms and localization operators , 2002 .
[39] Weichao Guo,et al. Full characterization of the embedding relations between α-modulation spaces , 2018 .
[40] H. Führ. Abstract Harmonic Analysis of Continuous Wavelet Transforms , 2005 .
[41] Hans G. Feichtinger,et al. Embedding theorems for decomposition spaces with applications to wavelet coorbit spaces , 2016 .
[42] H. Feichtinger,et al. Coorbit Theory and Bergman Spaces , 2014 .
[43] M. Pap. Properties of the voice transform of the Blaschke group and connections with atomic decomposition results in the weighted Bergman spaces , 2012 .
[44] F. Voigtlaender,et al. On dual molecules and convolution-dominated operators , 2020, 2001.09609.
[45] Karlheinz Gröchenig,et al. Time-Frequency Analysis of Sjöstrand's Class , 2004 .
[46] C. Heil. An Introduction to Weighted Wiener Amalgams , 2003 .
[47] Peter G. Casazza,et al. FRAMES FOR BANACH SPACES , 1977 .
[48] Embeddings of Decomposition Spaces into Sobolev and BV Spaces , 2016, 1601.02201.
[49] Martin Greiner,et al. Wavelets , 2018, Complex..
[50] Gabriele Steidl,et al. Shearlet Coorbit Spaces: Compactly Supported Analyzing Shearlets, Traces and Embeddings , 2011 .
[51] M. Schäfer,et al. General Coorbit Space Theory for Quasi-Banach Spaces and Inhomogeneous Function Spaces with Variable Smoothness and Integrability , 2015, 1506.07346.
[52] F. Voigtlaender,et al. Wavelet Coorbit Spaces viewed as Decomposition Spaces , 2014, 1404.4298.
[53] M. Fornasier,et al. Continuous Frames, Function Spaces, and the Discretization Problem , 2004, math/0410571.
[54] A. Robert. Introduction to the Representation Theory of Compact and Locally Compact Groups , 1983 .
[55] K. Gröchenig. Describing functions: Atomic decompositions versus frames , 1991 .
[56] FA ] 2 6 A ug 2 01 9 α-modulation spaces for step two stratified Lie groups , 2019 .
[57] Jordy Timo van Velthoven,et al. Coorbit spaces associated to integrably admissible dilation groups , 2019, 1903.11528.
[58] R. Howe. On the role of the Heisenberg group in harmonic analysis , 1980 .
[59] V. Paulsen,et al. An Introduction to the Theory of Reproducing Kernel Hilbert Spaces , 2016 .
[60] H. Feichtinger,et al. Banach Spaces of Distributions Defined by Decomposition Methods, I , 1985 .
[61] H. Feichtinger,et al. Banach spaces related to integrable group representations and their atomic decompositions. Part II , 1989 .
[62] Michael Ruzhansky,et al. Quantization on Nilpotent Lie Groups , 2016 .
[63] Gabriele Steidl,et al. Shearlet coorbit spaces and associated Banach frames , 2009 .
[64] A. Kirillov. Lectures on the Orbit Method , 2004 .
[65] Mads S. Jakobsen. On a (No Longer) New Segal Algebra: A Review of the Feichtinger Algebra , 2016, 1608.04566.