Flexible global generalized Hessenberg methods for linear systems with multiple right-hand sides

A variant of the global generalized Hessenberg method is presented which allows varying preconditioning at each restart. Theoretical results that relate the residual norm of this new method with its original version are developed. As two special variants, the flexible global GMRES method and the flexible global CMRH method are investigated both theoretically and experimentally. Numerical examples are conducted to illustrate the performance of these two flexible global methods in comparison with both the original global methods and weighted global methods.

[1]  Daniel B. Szyld,et al.  FQMR: A Flexible Quasi-Minimal Residual Method with Inexact Preconditioning , 2001, SIAM J. Sci. Comput..

[2]  M. Heyouni,et al.  The global Hessenberg and CMRH methods for linear systems with multiple right-hand sides , 2001, Numerical Algorithms.

[3]  Judith A. Vogel,et al.  Flexible BiCG and flexible Bi-CGSTAB for nonsymmetric linear systems , 2007, Appl. Math. Comput..

[4]  M. Heyouni,et al.  Matrix Krylov subspace methods for linear systems with multiple right-hand sides , 2005, Numerical Algorithms.

[5]  H. Sadok,et al.  Global FOM and GMRES algorithms for matrix equations , 1999 .

[6]  Gene H. Golub,et al.  Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration , 1999, SIAM J. Sci. Comput..

[7]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[8]  Valeria Simoncini,et al.  Flexible Inner-Outer Krylov Subspace Methods , 2002, SIAM J. Numer. Anal..

[9]  Hassane Sadok,et al.  CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm , 1999, Numerical Algorithms.

[10]  Ronald B. Morgan,et al.  Improved seed methods for symmetric positive definite linear equations with multiple right‐hand sides , 2008, Numer. Linear Algebra Appl..

[11]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[12]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[13]  H. Sadok,et al.  OBLIQUE PROJECTION METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES , 2005 .

[14]  Hassane Sadok,et al.  On a variable smoothing procedure for Krylov subspace methods , 1998 .