Parameter Tuning Patterns for Random Graph Coloring with Quantum Annealing

Quantum annealing is a combinatorial optimization technique inspired by quantum mechanics. Here we show that a spin model for the k-coloring of large dense random graphs can be field tuned so that its acceptance ratio diverges during Monte Carlo quantum annealing, until a ground state is reached. We also find that simulations exhibiting such a diverging acceptance ratio are generally more effective than those tuned to the more conventional pattern of a declining and/or stagnating acceptance ratio. This observation facilitates the discovery of solutions to several well-known benchmark k-coloring instances, some of which have been open for almost two decades.

[1]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[2]  Erio Tosatti,et al.  Quantum annealing by the path-integral Monte Carlo method: The two-dimensional random Ising model , 2002 .

[3]  Paolo Toth,et al.  A Metaheuristic Approach for the Vertex Coloring Problem , 2008, INFORMS J. Comput..

[4]  David S. Johnson,et al.  Foreword xiIntroduction to the Second DIMACS Challenge: Cliques, coloring, and satisfiability , 1993, Cliques, Coloring, and Satisfiability.

[5]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[6]  Jin-Kao Hao,et al.  An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring , 2010, Comput. Oper. Res..

[7]  M. Trick,et al.  Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993 , 1996 .

[8]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[9]  Craig A. Morgenstern Distributed coloration neighborhood search , 1993, Cliques, Coloring, and Satisfiability.

[10]  Florent Krzakala,et al.  Phase Transitions in the Coloring of Random Graphs , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Jin-Kao Hao,et al.  A memetic algorithm for graph coloring , 2010, Eur. J. Oper. Res..

[12]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[13]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[14]  E. Tosatti,et al.  Optimization using quantum mechanics: quantum annealing through adiabatic evolution , 2006 .

[15]  Feng Luo,et al.  Exploring the k-colorable landscape with Iterated Greedy , 1993, Cliques, Coloring, and Satisfiability.

[16]  E. Tosatti,et al.  Quantum annealing of the traveling-salesman problem. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Jin-Kao Hao,et al.  Coloring large graphs based on independent set extraction , 2012, Comput. Oper. Res..

[18]  Nicolas Zufferey,et al.  A graph coloring heuristic using partial solutions and a reactive tabu scheme , 2008, Comput. Oper. Res..

[19]  Erio Tosatti,et al.  Optimization by quantum annealing: lessons from hard satisfiability problems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[21]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[22]  Assaf Naor,et al.  Rigorous location of phase transitions in hard optimization problems , 2005, Nature.

[23]  Alain Hertz,et al.  Using tabu search techniques for graph coloring , 1987, Computing.

[24]  Alan Crispin,et al.  Quantum annealing of the graph coloring problem , 2011, Discret. Optim..

[25]  Ivan Zelinka,et al.  Handbook of Optimization - From Classical to Modern Approach , 2012, Handbook of Optimization.

[26]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[27]  B. Bollobás,et al.  Random Graphs of Small Order , 1985 .

[28]  Alan Crispin,et al.  Graph Coloring with a Distributed Hybrid Quantum Annealing Algorithm , 2011, KES-AMSTA.

[29]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[30]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[31]  David S. Johnson,et al.  Cliques, Coloring, and Satisfiability , 1996 .

[32]  Jin-Kao Hao,et al.  Recent Advances in Graph Vertex Coloring , 2013, Handbook of Optimization.

[33]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.