Automatically inf − sup compliant diamond‐mixed finite elements for Kirchhoff plates
暂无分享,去创建一个
[1] L. Morley. Skew plates and structures , 1963 .
[2] Jerrold E. Marsden,et al. Discrete Poincaré lemma , 2005 .
[3] S. Timoshenko,et al. THEORY OF PLATES AND SHELLS , 1959 .
[4] Klaus-Jürgen Bathe,et al. The MITC9 shell element in plate bending: mathematical analysis of a simplified case , 2011 .
[5] E. Kröner,et al. Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen , 1959 .
[6] R. Durán. The inf-sup condition and error estimates for the Arnold-Falk plate bending element , 1991 .
[7] John R. Rice,et al. On numerically accurate finite element , 1974 .
[8] A Bossavit,et al. Électromagnétisme, en vue de la modélisation , 1993 .
[9] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[10] R. A. Nicolaides,et al. STABILITY OF FINITE ELEMENTS UNDER DIVERGENCE CONSTRAINTS , 1983 .
[11] Rolf Stenberg,et al. Error analysis of some nite element methods for the Stokes problem , 1990 .
[12] Rolf Stenberg,et al. A technique for analysing finite element methods for viscous incompressible flow , 1990 .
[13] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[14] Huoyuan Duan,et al. Mixed and nonconforming finite element approximations of Reissner–Mindlin plates , 2003 .
[15] G. Friesecke,et al. The Föppl-von Kármán plate theory as a low energy Γ -limit of nonlinear elasticity , 2002 .
[16] Loring W. Tu,et al. Differential forms in algebraic topology , 1982, Graduate texts in mathematics.
[17] P. Le Tallec,et al. Compatibility condition and existence results in discrete finite incompressible elasticity , 1981 .
[18] K. Bathe. Finite Element Procedures , 1995 .
[19] R. A. Nicolaides,et al. Stable and Semistable Low Order Finite Elements for Viscous Flows , 1985 .
[20] Ang Yan Sheng,et al. Discrete Differential Geometry , 2017 .
[21] R. Stenberg. Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .
[22] A conforming finite element method for two‐dimensional incompressible elasticity , 1979 .
[23] B. Irons,et al. Inadequacy of nodal connections in a stiffness solution for plate bending , 1965 .
[24] M. Fortin,et al. ERROR ANALYSIS OF MIXED-INTERPOLATED ELEMENTS FOR REISSNER-MINDLIN PLATES , 1991 .
[25] Ellen Kuhl,et al. Diamond elements: a finite element/discrete‐mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity , 2007, International Journal for Numerical Methods in Engineering.
[26] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[27] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[28] J. Oden. Finite Elements: A Second Course , 1983 .
[29] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[30] Dominique Chapelle,et al. An optimal low-order locking-free finite element method for Reissner-Mindlin plates , 1998 .
[31] John A. Evans,et al. New rectangular plate elements based on twist-Kirchhoff theory , 2011 .
[32] Noboru Kikuchi,et al. REMARKS ON 4CST-ELEMENTS FOR INCOMPRESSIBLE MATERIALS* , 1983 .
[33] M. Ortiz,et al. C0 finite element discretization of Kirchhoff's equations of thin plate bending , 1988 .
[34] Antonio DeSimone,et al. Rigorous Bounds for the Föppl—von Kármán Theory of Isotropically Compressed Plates , 2000, J. Nonlinear Sci..
[35] Lourenço Beirão da Veiga,et al. A mimetic discretization of the Reissner–Mindlin plate bending problem , 2011, Numerische Mathematik.
[36] Patrice Hauret,et al. Méthodes numériques pour la dynamique des structures non linéaires incompressibles à deux échelles , 2004 .
[37] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[38] E. Reissner. The effect of transverse shear deformation on the bending of elastic plates , 1945 .
[39] Mark Meyer,et al. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.
[40] John A. Evans,et al. Generalization of the twist-Kirchhoff theory of plate elements to arbitrary quadrilaterals and assessment of convergence , 2012 .
[41] 川口 光年,et al. O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .
[42] R. A. Silverman,et al. The Mathematical Theory of Viscous Incompressible Flow , 2014 .
[43] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[44] Mathieu Desbrun,et al. Discrete Differential Geometry , 2008 .
[45] O. C. Zienkiewicz,et al. The Finite Element Method for Solid and Structural Mechanics , 2013 .
[46] A. Bossavit. Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .
[47] R. D. Mindlin,et al. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .