Automatically inf − sup compliant diamond‐mixed finite elements for Kirchhoff plates

We develop a mixed finite-element approximation scheme for Kirchhoff plate theory based on the reformulation of Kirchhoff plate theory of Ortiz and Morris [1]. In this reformulation the moment-equilibrium problem for the rotations is in direct analogy to the problem of incompressible two-dimensional elasticity. This analogy in turn opens the way for the application of diamond approximation schemes (Hauret et al. [2]) to Kirchhoff plate theory. We show that a special class of meshes derived from an arbitrary triangulation of the domain, the diamond meshes, results in the automatic satisfaction of the corresponding inf − sup condition for Kirchhoff plate theory. The attendant optimal convergence properties of the diamond approximation scheme are demonstrated by means of the several standard benchmark tests. We also provide a reinterpretation of the diamond approximation scheme for Kirchhoff plate theory within the framework of discrete mechanics. In this interpretation, the discrete moment-equilibrium problem is formally identical to the classical continuous problem, and the two differ only in the choice of differential structures. It also follows that the satisfaction of the inf − sup condition is a property of the cohomology of a certain discrete transverse differential complex. This close connection between the classical inf − sup condition and cohomology evinces the important role that the topology of the discretization plays in determining convergence in mixed problems.

[1]  L. Morley Skew plates and structures , 1963 .

[2]  Jerrold E. Marsden,et al.  Discrete Poincaré lemma , 2005 .

[3]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[4]  Klaus-Jürgen Bathe,et al.  The MITC9 shell element in plate bending: mathematical analysis of a simplified case , 2011 .

[5]  E. Kröner,et al.  Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen , 1959 .

[6]  R. Durán The inf-sup condition and error estimates for the Arnold-Falk plate bending element , 1991 .

[7]  John R. Rice,et al.  On numerically accurate finite element , 1974 .

[8]  A Bossavit,et al.  Électromagnétisme, en vue de la modélisation , 1993 .

[9]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[10]  R. A. Nicolaides,et al.  STABILITY OF FINITE ELEMENTS UNDER DIVERGENCE CONSTRAINTS , 1983 .

[11]  Rolf Stenberg,et al.  Error analysis of some nite element methods for the Stokes problem , 1990 .

[12]  Rolf Stenberg,et al.  A technique for analysing finite element methods for viscous incompressible flow , 1990 .

[13]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[14]  Huoyuan Duan,et al.  Mixed and nonconforming finite element approximations of Reissner–Mindlin plates , 2003 .

[15]  G. Friesecke,et al.  The Föppl-von Kármán plate theory as a low energy Γ -limit of nonlinear elasticity , 2002 .

[16]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[17]  P. Le Tallec,et al.  Compatibility condition and existence results in discrete finite incompressible elasticity , 1981 .

[18]  K. Bathe Finite Element Procedures , 1995 .

[19]  R. A. Nicolaides,et al.  Stable and Semistable Low Order Finite Elements for Viscous Flows , 1985 .

[20]  Ang Yan Sheng,et al.  Discrete Differential Geometry , 2017 .

[21]  R. Stenberg Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .

[22]  A conforming finite element method for two‐dimensional incompressible elasticity , 1979 .

[23]  B. Irons,et al.  Inadequacy of nodal connections in a stiffness solution for plate bending , 1965 .

[24]  M. Fortin,et al.  ERROR ANALYSIS OF MIXED-INTERPOLATED ELEMENTS FOR REISSNER-MINDLIN PLATES , 1991 .

[25]  Ellen Kuhl,et al.  Diamond elements: a finite element/discrete‐mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity , 2007, International Journal for Numerical Methods in Engineering.

[26]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[27]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[28]  J. Oden Finite Elements: A Second Course , 1983 .

[29]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[30]  Dominique Chapelle,et al.  An optimal low-order locking-free finite element method for Reissner-Mindlin plates , 1998 .

[31]  John A. Evans,et al.  New rectangular plate elements based on twist-Kirchhoff theory , 2011 .

[32]  Noboru Kikuchi,et al.  REMARKS ON 4CST-ELEMENTS FOR INCOMPRESSIBLE MATERIALS* , 1983 .

[33]  M. Ortiz,et al.  C0 finite element discretization of Kirchhoff's equations of thin plate bending , 1988 .

[34]  Antonio DeSimone,et al.  Rigorous Bounds for the Föppl—von Kármán Theory of Isotropically Compressed Plates , 2000, J. Nonlinear Sci..

[35]  Lourenço Beirão da Veiga,et al.  A mimetic discretization of the Reissner–Mindlin plate bending problem , 2011, Numerische Mathematik.

[36]  Patrice Hauret,et al.  Méthodes numériques pour la dynamique des structures non linéaires incompressibles à deux échelles , 2004 .

[37]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[38]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[39]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[40]  John A. Evans,et al.  Generalization of the twist-Kirchhoff theory of plate elements to arbitrary quadrilaterals and assessment of convergence , 2012 .

[41]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[42]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 2014 .

[43]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[44]  Mathieu Desbrun,et al.  Discrete Differential Geometry , 2008 .

[45]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[46]  A. Bossavit Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .

[47]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .