Rapid Detection of Coherent Tunneling in an InAs Nanowire Quantum Dot through Dispersive Gate Sensing

Dispersive sensing is a powerful technique that enables scalable and high-fidelity readout of solid-state quantum bits. In particular, gate-based dispersive sensing has been proposed as the readout mechanism for future topological qubits, which can be measured by single electrons tunneling through zero-energy modes. The development of such a readout requires resolving the coherent charge tunneling amplitude from a quantum dot in a Majorana-zero-mode host system faithfully on short time scales. Here, we demonstrate rapid single-shot detection of a coherent single-electron tunneling amplitude between InAs nanowire quantum dots. We realize a sensitive dispersive detection circuit by connecting a sub-GHz, lumped-element microwave resonator to a high-lever arm gate on one of the dots. The resulting large dot-resonator coupling leads to an observed dispersive shift that is of the order of the resonator linewidth at charge degeneracy. This shift enables us to differentiate between Coulomb blockade and resonance - corresponding to the scenarios expected for qubit-state readout - with a signal-to-noise ratio exceeding 2 for an integration time of 1μs. Our result paves the way for single-shot measurements of fermion parity on microsecond time scales in topological qubits.

[1]  J. R. Petta,et al.  Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier , 2015, 1502.01283.

[2]  T Duty,et al.  Observation of quantum capacitance in the Cooper-pair transistor. , 2005, Physical review letters.

[3]  Jacob M. Taylor,et al.  Circuit quantum electrodynamics with a spin qubit , 2012, Nature.

[4]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[5]  D. Ritchie,et al.  Charge and spin state readout of a double quantum dot coupled to a resonator. , 2010, Nano letters.

[6]  R. Egger,et al.  Majorana box qubits , 2016, 1609.01697.

[7]  W. V. D. Wiel,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[8]  Wide-band capacitance measurement on a semiconductor double quantum dot for studying tunneling dynamics , 2009, 0910.2512.

[9]  Sylvain Barraud,et al.  Radio-Frequency Capacitive Gate-Based Sensing , 2018, Physical Review Applied.

[10]  L. P. Kouwenhoven,et al.  Spin–orbit qubit in a semiconductor nanowire , 2010, Nature.

[11]  M. Freedman,et al.  Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes , 2016, 1610.05289.

[12]  T. Kobayashi,et al.  Single-Shot Single-Gate rf Spin Readout in Silicon , 2018, Physical Review X.

[13]  M. F. Gonzalez-Zalba,et al.  Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor. , 2015, Nano letters.

[14]  H. Lu,et al.  Frequency multiplexing for readout of spin qubits , 2013, 1312.5064.

[15]  Andrew S. Dzurak,et al.  Gate-based single-shot readout of spins in silicon , 2018, Nature Nanotechnology.

[16]  C. M. Marcus,et al.  Exponential protection of zero modes in Majorana islands , 2016, Nature.

[17]  M. Beck,et al.  Dipole coupling of a double quantum dot to a microwave resonator. , 2011, Physical review letters.

[18]  Y. Salathe,et al.  Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits , 2017, 1701.06933.

[19]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[20]  R Patil Vijay,et al.  Observation of quantum jumps in a superconducting artificial atom. , 2010, Physical review letters.

[21]  L Frunzio,et al.  Approaching unit visibility for control of a superconducting qubit with dispersive readout. , 2005, Physical review letters.

[22]  J. Petta,et al.  Radio frequency charge parity meter. , 2012, Physical review letters.

[23]  N. Lambert,et al.  Quantum capacitance and charge sensing of a superconducting double dot , 2016 .

[24]  M. Freedman,et al.  Measurement-only topological quantum computation. , 2008, Physical review letters.

[25]  Y. Oreg,et al.  Evidence of Majorana fermions in an Al - InAs nanowire topological superconductor , 2012, 1205.7073.

[26]  J I Colless,et al.  Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. , 2012, Physical review letters.

[27]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[28]  West,et al.  Single-electron capacitance spectroscopy of discrete quantum levels. , 1992, Physical review letters.