Fatty Acid Triangulation in Albumins Using a Landmark Spin Label

Several spatial correlations of up to six fatty acid (FA) binding sites in albumins were found by double electron-electron resonance (DEER). A strategy was used that combines spin-labeling and spin-probing techniques in electron paramagnetic resonance (EPR) spectroscopy. This is here achieved by introducing an additional covalent landmark spin (LS) label to the self-assembled system of EPR-active, paramagnetic stearic acid derivatives and albumins. Therefore, a cysteine specific, paramagnetic LS that was attached to the albumin surface at a unique position (Cys34) provides a fixed topological reference point for monitoring statistical ligand uptake. We propose that the determination of nanoscale distance distributions emerging between the LS and EPR-active fatty acid derivatives generally allows for the direct observation of individually occupied binding sites in solution. Essentially, several binding pockets, groups of them and evidence for ligand-induced allosteric modulation can be traced from such FA-LS interspin correlations. Experimental results were substantiated with theoretical predictions from molecular dynamics (MD) simulations. It was observed that all binding sites in an albumin ensemble may be statistically filled even at the lowest level of ligand loading. This approach generally bears the potential for mapping occupation states of individual ligand binding sites in proteins using such spin-

[1]  F. Wurm,et al.  Ligand-Binding Cooperativity Effects in Polymer-Protein Conjugation. , 2019, Biomacromolecules.

[2]  D. Hinderberger,et al.  A Platform of Phenol-Based Nitroxide Radicals as an "EPR Toolbox" in Supramolecular and Click Chemistry. , 2018, ChemPlusChem.

[3]  D. Hinderberger,et al.  Exploring the pH-Induced Functional Phase Space of Human Serum Albumin by EPR Spectroscopy , 2018, Magnetochemistry.

[4]  G. Ferrer-Sueta,et al.  The thiol of human serum albumin: Acidity, microenvironment and mechanistic insights on its oxidation to sulfenic acid , 2017, Free radical biology & medicine.

[5]  H. Steinhoff,et al.  Conformational Changes and Competitive Adsorption between Serum Albumin and Hemoglobin on Bioceramic Substrates. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  G. Clore,et al.  Long Distance Measurements up to 160 Å in the GroEL Tetradecamer Using Q-Band DEER EPR Spectroscopy. , 2016, Angewandte Chemie.

[7]  A. Meister,et al.  Tunable dynamic hydrophobic attachment of guest molecules in amphiphilic core–shell polymers , 2016 .

[8]  T. Prisner,et al.  Selective High-Resolution Detection of Membrane Protein-Ligand Interaction in Native Membranes Using Trityl-Nitroxide PELDOR. , 2016, Angewandte Chemie.

[9]  D. Hinderberger,et al.  Characterizing Active Pharmaceutical Ingredient Binding to Human Serum Albumin by Spin-Labeling and EPR Spectroscopy. , 2016, Chemistry.

[10]  R. Murarka,et al.  Conformational changes and allosteric communications in human serum albumin due to ligand binding , 2015, Journal of biomolecular structure & dynamics.

[11]  G. Jeschke,et al.  Distance Measurement on an Endogenous Membrane Transporter in E. coli Cells and Native Membranes Using EPR Spectroscopy. , 2015, Angewandte Chemie.

[12]  A. Shimshi,et al.  EPR spectroscopy shows that the blood carrier protein, human serum albumin, closely interacts with the N-terminal domain of the copper transporter, Ctr1. , 2015, The journal of physical chemistry. B.

[13]  V. Jovanović,et al.  Fatty acids binding to human serum albumin: Changes of reactivity and glycation level of Cysteine-34 free thiol group with methylglyoxal. , 2014, Chemico-biological interactions.

[14]  M. Mojović,et al.  Binding of doxyl stearic spin labels to human serum albumin: an EPR study. , 2014, The journal of physical chemistry. B.

[15]  D. Hinderberger,et al.  Modeling excluded volume effects for the faithful description of the background signal in double electron-electron resonance. , 2013, The journal of physical chemistry. B.

[16]  M. Otagiri,et al.  Redox properties of serum albumin. , 2013, Biochimica et biophysica acta.

[17]  D. Hinderberger,et al.  Using bound fatty acids to disclose the functional structure of serum albumin. , 2013, Biochimica et biophysica acta.

[18]  J. Hamilton NMR reveals molecular interactions and dynamics of fatty acid binding to albumin. , 2013, Biochimica et biophysica acta.

[19]  D. Hinderberger,et al.  First principles calculation of inhomogeneous broadening in solid-state cw-EPR spectroscopy. , 2013, Physical chemistry chemical physics : PCCP.

[20]  J. Hamilton,et al.  Correspondence of fatty acid and drug binding sites on human serum albumin: a two-dimensional nuclear magnetic resonance study. , 2013, Biochemistry.

[21]  S. Sigurdsson,et al.  Orientation selection in distance measurements between nitroxide spin labels at 94 GHz EPR with variable dual frequency irradiation. , 2013, Physical chemistry chemical physics : PCCP.

[22]  T. Prisner,et al.  An algorithm to analyze PELDOR data of rigid spin label pairs. , 2013, Physical chemistry chemical physics : PCCP.

[23]  W. Minor,et al.  Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. , 2012, Molecular immunology.

[24]  Y. Akdoğan,et al.  Evidence for Water-Tuned Structural Differences in Proteins: An Approach Emphasizing Variations in Local Hydrophilicity , 2012, PloS one.

[25]  D. Hinderberger,et al.  Loading and release capabilities of charged dendronized polymers revealed by EPR spectroscopy , 2012 .

[26]  E. Conte,et al.  Dynamic Interaction of cBid with Detergents, Liposomes and Mitochondria , 2012, PloS one.

[27]  Gunnar Jeschke,et al.  DEER distance measurements on proteins. , 2012, Annual review of physical chemistry.

[28]  W. Lubitz,et al.  High-field dipolar electron paramagnetic resonance (EPR) spectroscopy of nitroxide biradicals for determining three-dimensional structures of biomacromolecules in disordered solids. , 2011, The journal of physical chemistry. B.

[29]  L. Berliner Spin Labeling: Theory And Applications , 2011 .

[30]  H. Spiess,et al.  DEER in biological multispin-systems: a case study on the fatty acid binding to human serum albumin. , 2011, Journal of magnetic resonance.

[31]  H. Spiess,et al.  Characterization of the solution structure of human serum albumin loaded with a metal porphyrin and fatty acids. , 2011, Biophysical journal.

[32]  H. Spiess,et al.  The distribution of fatty acids reveals the functional structure of human serum albumin. , 2010, Angewandte Chemie.

[33]  H. Zimmermann,et al.  Flexibility of shape-persistent molecular building blocks composed of p-phenylene and ethynylene units. , 2010, Journal of the American Chemical Society.

[34]  Alice M. Bowen,et al.  Structural information from orientationally selective DEER spectroscopy. , 2009, Physical chemistry chemical physics : PCCP.

[35]  Gunnar Jeschke,et al.  Three-spin correlations in double electron-electron resonance. , 2009, Physical chemistry chemical physics : PCCP.

[36]  R. Stauber,et al.  Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties , 2007, British journal of pharmacology.

[37]  T. Prisner,et al.  Counting the monomers in nanometer-sized oligomers by pulsed electron-electron double resonance. , 2007, Journal of the American Chemical Society.

[38]  Gary Patterson,et al.  Physical Chemistry of Macromolecules , 2007 .

[39]  L. Berliner,et al.  ESR Spectroscopy in Membrane Biophysics , 2007 .

[40]  H. Zimmermann,et al.  How flexible are poly(para-phenyleneethynylene)s? , 2006, Angewandte Chemie.

[41]  S. Curry,et al.  Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. , 2006, Journal of molecular biology.

[42]  H. Zimmermann,et al.  DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data , 2006 .

[43]  H. Zimmermann,et al.  Isotope selection in distance measurements between nitroxides. , 2006, Journal of magnetic resonance.

[44]  F. Tian,et al.  Determining molecular binding sites on human serum albumin by displacement of oleic acid. , 2005, Analytical biochemistry.

[45]  S. Curry,et al.  Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Enzo Terreno,et al.  The extraordinary ligand binding properties of human serum albumin , 2005, IUBMB life.

[47]  S. Curry,et al.  Structural basis of the drug-binding specificity of human serum albumin. , 2005, Journal of molecular biology.

[48]  H. Steinhoff,et al.  Assessing oligomerization of membrane proteins by four-pulse DEER: pH-dependent dimerization of NhaA Na+/H+ antiporter of E. coli. , 2005, Biophysical journal.

[49]  David J Lurie,et al.  In vitro and in vivo measurement of pH and thiols by EPR-based techniques. , 2004, Antioxidants & redox signaling.

[50]  G. Jeschke,et al.  Data analysis procedures for pulse ELDOR measurements of broad distance distributions , 2004 .

[51]  S. Curry Beyond Expansion: Structural Studies on the Transport Roles of Human Serum Albumin , 2002, Vox sanguinis.

[52]  C. Riener,et al.  Quick measurement of protein sulfhydryls with Ellman's reagent and with 4,4′-dithiodipyridine , 2002, Analytical and bioanalytical chemistry.

[53]  Gert Vriend,et al.  Increasing the precision of comparative models with YASARA NOVA—a self‐parameterizing force field , 2002, Proteins.

[54]  Gunnar Jeschke,et al.  Direct conversion of EPR dipolar time evolution data to distance distributions. , 2002, Journal of magnetic resonance.

[55]  W. Hubbell,et al.  Structure and dynamics of a helical hairpin and loop region in annexin 12: a site-directed spin labeling study. , 2002, Biochemistry.

[56]  Kiselev Ma,et al.  Size of a human serum albumin molecule in solution , 2001 .

[57]  S. Curry,et al.  Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. , 2000, Journal of molecular biology.

[58]  Jeschke,et al.  EPR probes with well-defined, long distances between two or three unpaired electrons , 2000, The Journal of organic chemistry.

[59]  G. Jeschke,et al.  Dead-time free measurement of dipole-dipole interactions between electron spins. , 2000, Journal of magnetic resonance.

[60]  P. Brick,et al.  Fatty acid binding to human serum albumin: new insights from crystallographic studies. , 1999, Biochimica et biophysica acta.

[61]  J. Feix,et al.  Expression of a Human Serum Albumin Fragment (Consisting of Subdomains IA, IB, and IIA) and a Study of Its Properties , 1999, IUBMB life.

[62]  K. Kobayashi,et al.  Crystal structure of human serum albumin at 2.5 A resolution. , 1999, Protein engineering.

[63]  Rainer E. Martin,et al.  Determination of End-to-End Distances in a Series of TEMPO Diradicals of up to 2.8 nm Length with a New Four-Pulse Double Electron Electron Resonance Experiment. , 1998, Angewandte Chemie.

[64]  P. Brick,et al.  Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites , 1998, Nature Structural Biology.

[65]  H. Steinhoff,et al.  Calculation of electron paramagnetic resonance spectra from Brownian dynamics trajectories: application to nitroxide side chains in proteins. , 1996, Biophysical journal.

[66]  C. Altenbach,et al.  Watching proteins move using site-directed spin labeling. , 1996, Structure.

[67]  K. Hideg,et al.  Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. , 1996, Biochemistry.

[68]  T. Peters,et al.  All About Albumin: Biochemistry, Genetics, and Medical Applications , 1995 .

[69]  J. G. Morel,et al.  A finite mixture distribution for modelling multinomial extra variation , 1993 .

[70]  E. Royer,et al.  The spectral moments method , 1992 .

[71]  D. Cistola,et al.  Fatty acid distribution in systems modeling the normal and diabetic human circulation. A 13C nuclear magnetic resonance study. , 1991, The Journal of clinical investigation.

[72]  J. Hamilton,et al.  Locations of the three primary binding sites for long-chain fatty acids on bovine serum albumin. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[73]  M. Shopova,et al.  Characterization of spin-labelled fatty acids and hematoporphyrin binding sites interactions in serum albumin. , 1990, Biochimica et biophysica acta.

[74]  R. Lathe Phd by thesis , 1988, Nature.

[75]  D. Cistola,et al.  Carbon 13 NMR studies of saturated fatty acids bound to bovine serum albumin. II. Electrostatic interactions in individual fatty acid binding sites. , 1987, The Journal of biological chemistry.

[76]  D. Cistola,et al.  Carbon 13 NMR studies of saturated fatty acids bound to bovine serum albumin. I. The filling of individual fatty acid binding sites. , 1987, The Journal of biological chemistry.

[77]  T. Oida 1H-NMR study on the interactions of human serum albumin with free fatty acid. , 1986, Journal of biochemistry.

[78]  P. K. Smith,et al.  Measurement of protein using bicinchoninic acid. , 1985, Analytical biochemistry.

[79]  A. Milov,et al.  Electron-electron double resonance in electron spin echo: Model biradical systems and the sensitized photolysis of decalin , 1984 .

[80]  D. Cistola,et al.  Interactions of myristic acid with bovine serum albumin: a 13C NMR study. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[81]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[82]  L. Dalton,et al.  Equilibrium binding of spin-labeled fatty acids to bovine serum albumin: suitability as surrogate ligands for natural fatty acids. , 1982, Biochemistry.

[83]  L. Berliner,et al.  A novel reversible thiol-specific spin label: papain active site labeling and inhibition. , 1982, Analytical biochemistry.

[84]  L. Sklar,et al.  Human serum albumin. Spectroscopic studies of binding and proximity relationships for fatty acids and bilirubin. , 1979, The Journal of biological chemistry.

[85]  S. Eaton,et al.  Interaction of spin labels with transition metals , 1978 .

[86]  D. Eatough,et al.  The binding isotherms for the interaction of 5-doxyl stearic acid with bovine and human albumin. , 1978, Journal of lipid research.

[87]  A. Kulikov,et al.  The use of spin relaxation phenomena in the investigation of the structure of model and biological systems by the method of spin labels , 1977 .

[88]  H. Ruf,et al.  Binding of nitroxide stearate spin labels to bovine serum albumin. , 1976, Biochimica et biophysica acta.

[89]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[90]  Terry D. Lee,et al.  In situ reduction of nitroxide spin labels with phenylhydrazine in deuteriochloroform solution. Convenient method for obtaining structural information on nitroxides using nuclear magnetic resonance spectroscopy , 1975 .

[91]  A A Spector,et al.  Fatty acid binding to plasma albumin. , 1975, Journal of lipid research.

[92]  A. Gotto,et al.  Bovine serum albumin. Study of the fatty acid and steroid binding sites using spin-labeled lipids. , 1975, The Journal of biological chemistry.

[93]  A. A. Spector,et al.  Long chain fatty acid binding to human plasma albumin. , 1975, The Journal of biological chemistry.

[94]  J E Fletcher,et al.  COMPUTER ANALYSIS OF DRUG‐PROTEIN BINDING DATA * , 1973, Annals of the New York Academy of Sciences.

[95]  A. A. Spector,et al.  Analysis of long-chain free fatty acid binding to bovine serum albumin by determination of stepwise equilibrium constants. , 1971, Biochemistry.

[96]  J E Fletcher,et al.  Analysis of macromolecule--ligand binding by determination of stepwise equilibrium constants. , 1970, Biochemistry.

[97]  J. Janatova,et al.  The heterogeneity of bovine albumin with respect to sulfhydryl and dimer content. , 1968, The Journal of biological chemistry.

[98]  H. Mcconnell,et al.  Spin-labeled biomolecules. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[99]  G. Ellman,et al.  Tissue sulfhydryl groups. , 1959, Archives of biochemistry and biophysics.

[100]  D. Goodman,et al.  The Interaction of Human Serum Albumin with Long-chain Fatty Acid Anions , 1958 .

[101]  C. Tanford,et al.  The Viscosity of Aqueous Solutions of Bovine Serum Albumin between pH 4.3 and 10.5. , 1956 .

[102]  F. Karush The Interaction of Optically Isomeric Dyes with Human Serum Albumin1 , 1954 .

[103]  R. Dulbecco,et al.  PLAQUE FORMATION AND ISOLATION OF PURE LINES WITH POLIOMYELITIS VIRUSES , 1954, The Journal of experimental medicine.

[104]  F. Karush Heterogeneity of the Binding Sites of Bovine Serum Albumin1 , 1950 .

[105]  G. Marsche,et al.  Redox state of human serum albumin in terms of cysteine-34 in health and disease. , 2010, Methods in enzymology.

[106]  H. Steinhoff,et al.  Membrane Protein Structure and Dynamics Studied by Site-Directed Spin-Labeling ESR , 2007 .

[107]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[108]  Jozef Baruník Diploma thesis , 1999 .

[109]  C. Altenbach,et al.  Investigation of structure and dynamics in membrane proteins using site-directed spin labeling , 1994 .

[110]  Olga Kennard,et al.  Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds , 1987 .

[111]  J. Freed 3 – Theory of Slow Tumbling ESR Spectra for Nitroxides , 1976 .

[112]  A. A. Spector,et al.  Binding of long-chain fatty acids to bovine serum albumin. , 1969, Journal of lipid research.

[113]  H. Mcconnell,et al.  A nitroxide-maleimide spin label. , 1966, Proceedings of the National Academy of Sciences of the United States of America.