Grassmannian spectral shooting

We present a new numerical method for computing the pure-point spectrum associated with the linear stability of coherent structures. In the context of the Evans function shooting and matching approach, all the relevant information is carried by the flow projected onto the underlying Grassmann manifold. We show how to numerically construct this projected flow in a stable and robust manner. In particular, the method avoids representation singularities by, in practice, choosing the best coordinate patch representation for the flow as it evolves. The method is analytic in the spectral parameter and of complexity bounded by the order of the spectral problem cubed. For large systems it represents a competitive method to those recently developed that are based on continuous orthogonalization. We demonstrate this by comparing the two methods in three applications: Boussinesq solitary waves, autocatalytic travelling waves and the Ekman boundary layer.

[1]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[2]  R. Hermann,et al.  Applications of algebraic geometry to systems theory--Part I , 1977 .

[3]  Leon Q. Brin,et al.  Numerical testing of the stability of viscous shock waves , 2001, Math. Comput..

[4]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[5]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[6]  Xingren Ying,et al.  A reliable argument principle algorithm to find the number of zeros of an analytic function in a bounded domain , 1988 .

[7]  John Billingham,et al.  The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. I. Permanent form travelling waves , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[8]  V. V. Gubernov,et al.  Evans function stability of non-adiabatic combustion waves , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Veerle Ledoux,et al.  Study of special algorithms for solving Sturm-Liouville and Schrodinger equations , 2007 .

[10]  Robert Hermann,et al.  Applications of Algebraic Geometry to Systems Theory: The McMillan Degree and Kronecker Indices of Transfer Functions as Topological and Holomorphic System Invariants , 1978 .

[11]  R. Hermann,et al.  Lie theoretic aspects of the Riccati equation , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[12]  Stein Krogstad,et al.  A Low Complexity Lie Group Method on the Stiefel Manifold , 2003 .

[13]  Robert B. Walker,et al.  An R matrix approach to the solution of coupled equations for atom–molecule reactive scattering , 1976 .

[14]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[15]  Stephen Coombes,et al.  Evans Functions for Integral Neural Field Equations with Heaviside Firing Rate Function , 2004, SIAM J. Appl. Dyn. Syst..

[16]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[17]  Joe W. Harris,et al.  Principles of Algebraic Geometry: Griffiths/Principles , 1994 .

[18]  Thomas J. Bridges,et al.  Numerical exterior algebra and the compound matrix method , 2002, Numerische Mathematik.

[19]  Shunsaku Nii An extension of the stability index for traveling-wave solutions and its application to bifurcations , 1997 .

[20]  Robert Gardner,et al.  Stability analysis of singular patterns in the 1-D Gray-Scott model I: a matched asymptotics approach , 1998 .

[21]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[22]  Simon J. A. Malham,et al.  Unsteady fronts in an autocatalytic system , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  Yuji Kodama,et al.  Young diagrams and N-soliton solutions of the KP equation , 2004, nlin/0406033.

[24]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[25]  T. Bridges,et al.  Hydrodynamic stability of the Ekman boundary layer including interaction with a compliant surface: a numerical framework , 2003 .

[26]  Elena Celledoni,et al.  Approximating the exponential from a Lie algebra to a Lie group , 2000, Math. Comput..

[27]  S. Lafortune,et al.  Superposition formulas for pseudounitary matrix Riccati equations , 1996 .

[28]  E. Celledoni Lie group methods , 2009 .

[29]  J. Alexander,et al.  A topological invariant arising in the stability analysis of travelling waves. , 1990 .

[30]  A. Iserles,et al.  On the Implementation of the Method of Magnus Series for Linear Differential Equations , 1999 .

[31]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[32]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[33]  D. Manolopoulos,et al.  Symplectic integrators tailored to the time‐dependent Schrödinger equation , 1996 .

[34]  J. Pryce Numerical Solution of Sturm-Liouville Problems , 1994 .

[35]  N. Steenrod Topology of Fibre Bundles , 1951 .

[36]  Leanne Allen Modelling dolphin hydrodynamics : the numerical analysis and hydrodynamic stability of flow past compliant surfaces , 2001 .

[37]  Simon J. A. Malham,et al.  Numerical Evaluation of the Evans Function by Magnus Integration , 2005 .

[38]  John Billingham,et al.  The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. III. Large time development in quadratic autocatalysis , 1992 .

[39]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[40]  R. Hermann,et al.  Applications of algebraic geometry to systems theory, part II: Feedback and pole placement for linear Hamiltonian systems , 1977, Proceedings of the IEEE.

[41]  M. Zelikin,et al.  Control theory and optimization I , 1999 .

[42]  F. Gesztesy,et al.  Evans Functions, Jost Functions, and Fredholm Determinants , 2005, math/0511372.

[43]  Gene H. Golub,et al.  Numerical methods for computing angles between linear subspaces , 1971, Milestones in Matrix Computation.

[44]  J. Alexander,et al.  LINEAR INSTABILITY OF SOLITARY WAVES OF A BOUSSINESQ-TYPE EQUATION: A COMPUTER ASSISTED COMPUTATION , 1999 .

[45]  R. Brockett,et al.  Multivariable Nyquist criteria, root loci, and pole placement: A geometric viewpoint , 1981 .

[46]  Moritz Beckmann,et al.  Young tableaux , 2007 .

[47]  Jonathan Swinton,et al.  Stability of travelling pulse solutions to a laser equation , 1990 .

[48]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[49]  F. Gesztesy,et al.  Derivatives of (Modified) Fredholm Determinants and Stability of Standing and Traveling Waves , 2008, 0802.1665.

[50]  James Demmel,et al.  Continuation of Invariant Subspaces in Large Bifurcation Problems , 2008, SIAM J. Sci. Comput..

[51]  E. Previato Advances in Algebraic Geometry Motivated by Physics , 2001 .

[52]  Guido Vanden Berghe,et al.  A numerical procedure to solve the multichannel Schrödinger eigenvalue problem , 2007, Comput. Phys. Commun..

[53]  Frank Sottile,et al.  Rational Curves on Grassmanians: systems theory, reality, and transversality , 2000, math/0012079.

[54]  A. Kresch Flag varieties and Schubert calculus , 2007 .

[55]  Hsueh-Chia Chang,et al.  Local stability theory of solitary pulses in an active medium , 1996 .

[56]  S. Chern Complex manifolds without potential theory , 1979 .

[57]  Luca Dieci,et al.  Orthonormal integrators based on Householder and Givens transformations , 2000, Future Gener. Comput. Syst..

[58]  Curvature effects on spiral spectra: generation of point eigenvalues near branch points. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Thomas J. Bridges,et al.  Computing Lyapunov exponents on a Stiefel manifold , 2001 .

[60]  Joachim Rosenthal,et al.  Dynamic Pole Assignment and Schubert Calculus , 1996 .

[61]  Mark A. Shayman,et al.  Phase portrait of the matrix Riccati equation , 1986 .

[62]  Kevin Zumbrun,et al.  Efficient Computation of Analytic Bases in Evans Function Analysis of Large Systems , 2006, Numerische Mathematik.

[63]  Michael I. Weinstein,et al.  Eigenvalues, and instabilities of solitary waves , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[64]  Marco Marletta,et al.  Numerical Solution of Non-Self-Adjoint Sturm-Liouville Problems and Related Systems , 2000, SIAM J. Numer. Anal..

[65]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[66]  新居 俊作 An extension of the stability index for travelling wave solutions and its application for bifurcations , 1995 .

[67]  Clyde F. Martin,et al.  Lie and Morse theory for periodic orbits of vector fields and matrix Riccati equations, II , 2005, Mathematical systems theory.

[68]  Antonella Zanna,et al.  Generalized Polar Decompositions for the Approximation of the Matrix Exponential , 2001, SIAM J. Matrix Anal. Appl..

[69]  S. Lafortune,et al.  Instability of local deformations of an elastic rod , 2003 .

[70]  Antonella Zanna,et al.  Efficient Computation of the Matrix Exponential by Generalized Polar Decompositions , 2004, SIAM J. Numer. Anal..

[71]  Todd Kapitula,et al.  Instability mechanism for bright solitary-wave solutions to the cubic–quintic Ginzburg–Landau equation , 1998 .

[72]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[73]  L. Drury Numerical solution of Orr—Sommerfeld-type equations , 1980 .

[74]  C. R. Schneider,et al.  Global aspects of the matrix Riccati equation , 1973, Mathematical Systems Theory.

[75]  B. R. Johnson New numerical methods applied to solving the one‐dimensional eigenvalue problem , 1977 .

[76]  S. Scott,et al.  Oscillating wave fronts in isothermal chemical systems with arbitrary powers of autocatalysis , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[77]  Periodic solutions of the Riccati equation , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[78]  M. Zelikin Homogeneous spaces and the Riccati equation in the calculus of variations , 2010 .

[79]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[80]  Thomas J. Bridges,et al.  Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework , 2002 .

[81]  Veerle Ledoux,et al.  Introductory Schubert calculus , 2010 .

[82]  Kevin Zumbrun,et al.  An efficient shooting algorithm for Evans function calculations in large systems , 2006 .

[83]  H. Prüfer Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen , 1926 .

[84]  D. Zwillinger Matrix Riccati Equations , 1992 .

[85]  On the algebraic geometry of the output feedback pole placement map , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[86]  J. Hutson Coupled channel methods for solving the bound-state Schrödinger equation , 1994 .

[87]  Clyde F. Martin,et al.  Lie and morse theory for periodic orbits of vector fields and matrix riccati equations, I: General lie-theoretic methods , 1981, Mathematical systems theory.

[88]  GRASSMANNIANS: THE FIRST EXAMPLE OF A MODULI , 2006 .

[89]  P. Olver Equivalence, Invariants, and Symmetry: References , 1995 .

[90]  R. Wyatt,et al.  Computational method for the quantum Hamilton-Jacobi equation: bound states in one dimension. , 2006, The Journal of chemical physics.

[91]  H. Munthe-Kaas High order Runge-Kutta methods on manifolds , 1999 .

[92]  H. O. Erdin Characteristic Classes , 2004 .

[93]  John B. Moore,et al.  Global analysis of Oja's flow for neural networks , 1994, IEEE Trans. Neural Networks.

[94]  Jeremy Schiff,et al.  A Natural Approach to the Numerical Integration of Riccati Differential Equations , 1999 .

[95]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[96]  Infinite-dimensional Evans function theory for elliptic eigenvalue problems in a channel , 2006 .

[97]  H. Abou-Kandil,et al.  Matrix Riccati Equations in Control and Systems Theory , 2003, IEEE Transactions on Automatic Control.

[98]  D. Manolopoulos,et al.  Symplectic integrators for the multichannel Schrödinger equation , 1995 .

[99]  T. Willmore FOUNDATIONS OF DIFFERENTIABLE MANIFOLDS AND LIE GROUPS (Graduate Texts in Mathematics, 94) , 1984 .

[100]  Elena Celledoni,et al.  On the Implementation of Lie Group Methods on the Stiefel Manifold , 2003, Numerical Algorithms.

[101]  Ute Ebert,et al.  Laplacian Instability of Planar Streamer Ionization Fronts—An Example of Pulled Front Analysis , 2008, J. Nonlinear Sci..

[102]  Jitse Niesen,et al.  Computing Stability of Multidimensional Traveling Waves , 2008, SIAM J. Appl. Dyn. Syst..

[103]  Riccati differential equation for quantum mechanical bound states: Comparison of numerical integrators , 2008 .

[104]  David Terman,et al.  Stability of planar wave solutions to combustion model , 1990 .

[105]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[106]  S. Bittanti,et al.  The Riccati equation , 1991 .