Flatness-based two-degree-of-freedom control of industrial semi-batch reactors using a new observation model for an extended Kalman filter approach

A flatness-based two-degree-of-freedom control is applied to industrial semi-batch reactors. Thereby a new observation model for an extended Kalman filter approach based on the results of Graichen et al. (2006) is used in order to estimate the reaction heat and the overall heat transfer coefficient. The flatness-based advanced process control scheme makes use of a calorimetric model of the reactor in order to calculate the nominal non-linear feedforward; the feedback part consists of a linear PID control. Results from production are presented including the heat up phase of the process. The performance and effectiveness of the applied flatness-based two-degree-of-freedom control are shown: a significant reduction of the batch time is achieved.

[1]  N. Petit,et al.  Control of an industrial polymerization reactor using flatness , 2002 .

[2]  I. Horowitz Synthesis of feedback systems , 1963 .

[3]  J. Lévine,et al.  On dynamic feedback linearization , 1989 .

[4]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[5]  D. Landau Theory and Applications a tribute to Ioan , 2006 .

[6]  Ian F. Akyildiz,et al.  Editorial for 2006 , 2007, Ad hoc networks.

[7]  Veit Hagenmeyer Robust Nonlinear Tracking Control Based on Differential Flatness , 2002 .

[8]  Michel Fliess,et al.  A flatness based control synthesis of linear systems and application to windshield wipers , 1997, 1997 European Control Conference (ECC).

[9]  Ralf Rothfuß,et al.  Flatness based control of a nonlinear chemical reactor model , 1996, Autom..

[10]  M. Fliess,et al.  Regulation of non-minimum phase outputs: a flatness based approach , 1998 .

[11]  B. Paden,et al.  Nonlinear inversion-based output tracking , 1996, IEEE Trans. Autom. Control..

[12]  Wolfgang Marquardt,et al.  Analysis and nonlinear model predictive control of the Chylla-Haase benchmark problem , 1996 .

[13]  D. Bonvin,et al.  Application of estimation techniques to batch reactors—II. Experimental studies in state and parameter estimation , 1989 .

[14]  R. A. Wright,et al.  Nonlinear controllers for trajectory tracking in batch processes , 1989 .

[15]  R. Chylla,et al.  Temperature control of semibatch polymerization reactors , 1993 .

[16]  Joachim Horn,et al.  FLATNESS – BASED CLUTCH CONTROL FOR AUTOMATED MANUAL TRANSMISSIONS , 2002 .

[17]  J. Lévine,et al.  Are there New Industrial Perspectives in the Control of Mechanical Systems , 1999 .

[18]  J. Leiza,et al.  On‐line control of a semibatch emulsion polymerization reactor based on calorimetry , 1997 .

[19]  Veit Hagenmeyer,et al.  Comparative evaluation of nonlinear model predictive and flatness-based two-degree-of-freedom control design in view of industrial application , 2007 .

[20]  J. Corriou Process Control: Theory and Applications , 2010 .

[21]  Hans Schuler,et al.  Calorimetric-state estimators for chemical reactor diagnosis and control: review of methods and applications , 1992 .

[22]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[23]  Veit Hagenmeyer,et al.  Flachheitsbasierter Entwurf von linearen und nichtlinearen Vorsteuerungen (Flatness-based Design of Linear and Nonlinear Feedforward Controls) , 2004 .

[24]  Joachim Birk,et al.  Rechnergestützte Analyse und Lösung nichtlinearer Beobachtungsaufgaben , 1992 .

[25]  B. J. Cott,et al.  Temperature control of exothermic batch reactors using generic model control , 1989 .

[26]  Ridvan Berber,et al.  Control of Batch Reactors: A Review , 1995 .

[27]  Wolfgang Marquardt,et al.  OPTIMIZING ADAPTIVE CALORIMETRIC MODEL PREDICTIVE CONTROL OF A BENCHMARK SEMI-BATCH REACTION PROCESS , 2002 .

[28]  Veit Hagenmeyer,et al.  Robustness analysis of exact feedforward linearization based on differential flatness , 2003, Autom..

[29]  Knut Graichen,et al.  Feedforward Control Design for Finite-Time Transition Problems of Nonlinear Systems With Input and Output Constraints , 2008, IEEE Transactions on Automatic Control.

[30]  M. Fliess,et al.  Continuous-time linear predictive control and flatness: A module-theoretic setting with examples , 2000 .

[31]  M. Zeitz,et al.  Extended Luenberger observer for non-linear multivariable systems , 1988 .

[32]  Veit Hagenmeyer,et al.  A new approach to inversion-based feedforward control design for nonlinear systems , 2005, Autom..

[33]  Jean-Pierre Corriou Process control , 2004 .

[34]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[35]  Veit Hagenmeyer,et al.  Internal dynamics of flat nonlinear SISO systems with respect to a non-flat output , 2004, Syst. Control. Lett..

[36]  Francis J. Doyle,et al.  Differential flatness based nonlinear predictive control of fed-batch bioreactors , 2001 .

[37]  Jörg Raisch,et al.  Control of batch cooling crystallization processes based on orbital flatness , 2003 .

[38]  V. Hagenmeyer,et al.  Exact feedforward linearization based on differential flatness , 2003 .

[39]  Hans Schuler,et al.  Automation in Chemical Industry (Automatisierung in der Chemischen Industrie) , 2006, Autom..

[40]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[41]  J. Macgregor,et al.  Nonlinear adaptive temperature control of multi-product, semi-batch polymerization reactors , 1995 .

[42]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[43]  Joachim Rudolph,et al.  Flatness-based control of nonlinear delay systems: A chemical reactor example , 1998 .

[44]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[45]  Veit Hagenmeyer,et al.  Feedforward control with online parameter estimation applied to the Chylla–Haase reactor benchmark , 2006 .

[46]  Knut Graichen,et al.  Feedforward control design for nonlinear systems under input constraints , 2005 .

[47]  Dominique Bonvin,et al.  Optimal operation of batch reactors—a personal view , 1998 .

[48]  Joachim Horn,et al.  Flatness-based clutch control for automated manual transmissions , 2002 .

[49]  U. Kuhn Eine praxisnahe Einstellregel für PID-Regler: die T-Summen-Regel , 1995 .