Batch and Online Underdetermined Source Separation Using Laplacian Mixture Models

In this paper, we explore the problem of sound source separation and identification from a two-sensor instantaneous mixture. The estimation of the mixing and the sources is performed using Laplacian mixture models (LMM). The proposed algorithm fits the model using batch processing of the observed data and performs separation using either a hard or a soft decision scheme. An extension of the algorithm to online source separation, where the samples are arriving in a real-time fashion, is also presented. The online version demonstrates several promising source separation possibilities in the case of nonstationary mixing.

[1]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[2]  V. Koivunen,et al.  Identifiability and Separability of Linear Ica Models Revisited , 2003 .

[3]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[4]  Barak A. Pearlmutter,et al.  Blind Source Separation via Multinode Sparse Representation , 2001, NIPS.

[5]  Simon J. Godsill,et al.  Bayesian Approach for Blind Separation of Underdetermined Mixtures of Sparse Sources , 2004, ICA.

[6]  Barak A. Pearlmutter,et al.  Soft-LOST: EM on a Mixture of Oriented Lines , 2004, ICA.

[7]  Umeshwar Dayal,et al.  K-Harmonic Means - A Spatial Clustering Algorithm with Boosting , 2000, TSDM.

[8]  Justinian P. Rosca,et al.  REAL-TIME TIME-FREQUENCY BASED BLIND SOURCE SEPARATION , 2001 .

[9]  N. Mitianoudis,et al.  Simple mixture model for sparse overcomplete ICA , 2004 .

[10]  T. Ens,et al.  Blind signal separation : statistical principles , 1998 .

[11]  Xavier Rodet,et al.  Underdetermined Source Separation with Structured Source Priors , 2004, ICA.

[12]  Michael Zibulevsky,et al.  Underdetermined blind source separation using sparse representations , 2001, Signal Process..

[13]  Yan Yang,et al.  Image Denoising by Sparse Code Shrinkage , 2009, 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing.

[14]  Mark A. Girolami,et al.  A Variational Method for Learning Sparse and Overcomplete Representations , 2001, Neural Computation.

[15]  Scott Rickard,et al.  Blind separation of speech mixtures via time-frequency masking , 2004, IEEE Transactions on Signal Processing.

[16]  Mike E. Davies,et al.  Sparse and shift-Invariant representations of music , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[17]  Nikolaos Mitianoudis,et al.  Overcomplete source separation using Laplacian mixture models , 2005, IEEE Signal Processing Letters.

[18]  Michael S. Lewicki,et al.  Efficient coding of natural sounds , 2002, Nature Neuroscience.

[19]  Barak A. Pearlmutter,et al.  Hard-LOST: modified k-means for oriented lines , 2004 .

[20]  Hagai Attias,et al.  Independent Factor Analysis , 1999, Neural Computation.

[21]  Andrzej Cichocki,et al.  Adaptive blind signal and image processing , 2002 .

[22]  Simon Haykin,et al.  Image Denoising by Sparse Code Shrinkage , 2001 .

[23]  Simon J. Godsill,et al.  Blind separation of sparse sources using variational EM , 2005, 2005 13th European Signal Processing Conference.

[24]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[25]  Aapo Hyvärinen,et al.  Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood , 1998, Neurocomputing.

[26]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[27]  S. Rickard,et al.  DESPRIT - histogram based blind source separation of more sources than sensors using subspace methods , 2005, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2005..

[28]  Terrence J. Sejnowski,et al.  Blind source separation of more sources than mixtures using overcomplete representations , 1999, IEEE Signal Processing Letters.

[29]  Alicja Wieczorkowska,et al.  Music Information Retrieval , 2009, Encyclopedia of Data Warehousing and Mining.

[30]  Mike E. Davies,et al.  Sparsifying subband decompositions , 2003, 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (IEEE Cat. No.03TH8684).

[31]  Visa Koivunen,et al.  Identifiability, separability, and uniqueness of linear ICA models , 2004, IEEE Signal Processing Letters.

[32]  V. Quarles,et al.  Department of Electrical Engineering and Computer Science , 1994 .

[33]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[34]  Mark D. Plumbley,et al.  Sparse representations of polyphonic music , 2006, Signal Process..

[35]  Eric Moulines,et al.  Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.