Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration.

[1]  Julian R. Jones,et al.  A correlative imaging based methodology for accurate quantitative assessment of bone formation in additive manufactured implants , 2016, Journal of Materials Science: Materials in Medicine.

[2]  Roberto Pisano,et al.  Structure optimisation and biological evaluation of bone scaffolds prepared by co-sintering of silicate and phosphate glasses , 2015 .

[3]  Chikara Ohtsuki,et al.  A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants , 2015, Journal of Materials Science: Materials in Medicine.

[4]  Roberto Pisano,et al.  Tailoring of Bone Scaffold Properties Using Silicate/Phosphate Glass Mixtures , 2014 .

[5]  D. Brauer,et al.  Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation. , 2014, Acta biomaterialia.

[6]  W. Stark,et al.  In vitro reactivity of Sr-containing bioactive glass (type 1393) nanoparticles , 2014 .

[7]  W. Peukert,et al.  Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. , 2014, ACS applied materials & interfaces.

[8]  D. Brauer,et al.  Mixed alkali effects in Bioglass® 45S5 , 2013 .

[9]  Julian R. Jones,et al.  Bioactive Glass Foam Scaffolds are Remodelled by Osteoclasts and Support the Formation of Mineralized Matrix and Vascular Networks In Vitro , 2013, Advanced Healthcare Materials.

[10]  Francesco Baino,et al.  Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution , 2013, Journal of biomaterials applications.

[11]  M. Hupa,et al.  T–T–T behaviour of bioactive glasses 1–98 and 13–93 , 2012 .

[12]  S. Tofail,et al.  Unravelling the specific site preference in doping of calcium hydroxyapatite with strontium from ab initio investigations and Rietveld analyses. , 2012, Physical chemistry chemical physics : PCCP.

[13]  D. Brauer,et al.  Predicting the bioactivity of glasses using the network connectivity or split network models , 2011 .

[14]  Eduardo Saiz,et al.  Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. , 2011, Acta biomaterialia.

[15]  Carlotta Giorgi,et al.  Calcium signaling around Mitochondria Associated Membranes (MAMs) , 2011, Cell Communication and Signaling.

[16]  L. Walsh,et al.  IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-β1 resulting in epithelial to mesenchymal transition , 2011, Cell Communication and Signaling.

[17]  Julian R Jones,et al.  Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. , 2011, Acta biomaterialia.

[18]  Aldo R Boccaccini,et al.  A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. , 2011, Biomaterials.

[19]  Eduardo Saiz,et al.  Bioinspired Strong and Highly Porous Glass Scaffolds , 2011, Advanced functional materials.

[20]  Robert V. Law,et al.  Strontium containing bioactive glasses: Glass structure and physical properties , 2010 .

[21]  R. Hill,et al.  Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. , 2010, Acta biomaterialia.

[22]  R. Hill,et al.  Influence of magnesia on the structure and properties of bioactive glasses , 2010 .

[23]  Julian R. Jones,et al.  Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. , 2009, Biomaterials.

[24]  Delbert E Day,et al.  Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique. , 2008, Acta biomaterialia.

[25]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[26]  A. Boccaccini,et al.  Poly(D,L-lactic acid) coated 45S5 Bioglass-based scaffolds: processing and characterization. , 2006, Journal of biomedical materials research. Part A.

[27]  A. Boccaccini,et al.  Structural analysis of bioactive glasses , 2005 .

[28]  Larry L. Hench,et al.  Regeneration of trabecular bone using porous ceramics , 2003 .

[29]  J. Luyten,et al.  Gelatin gelcasting of ceramic components , 2003 .

[30]  A. Boyde,et al.  Stem Cell Properties of Human Dental Pulp Stem Cells , 2002, Journal of dental research.

[31]  J. Polak,et al.  Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. , 2000, Biochemical and biophysical research communications.

[32]  H. Oonishi,et al.  Quantitative comparison of bone growth behavior in granules of Bioglass, A-W glass-ceramic, and hydroxyapatite. , 2000, Journal of biomedical materials research.

[33]  L L Hench,et al.  Effect of crystallization on apatite-layer formation of bioactive glass 45S5. , 1996, Journal of biomedical materials research.

[34]  P. Marie,et al.  An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen‐deficient rats , 1993, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[35]  L. Hench,et al.  Solution effects on the surface reactions of a bioactive glass. , 1993, Journal of biomedical materials research.

[36]  A. Reddi,et al.  The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. , 1992, Matrix.

[37]  T Kitsugi,et al.  Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W. , 1990, Journal of biomedical materials research.

[38]  S F Hulbert,et al.  Tissue reaction to three ceramics of porous and non-porous structures. , 1972, Journal of biomedical materials research.

[39]  E. Teller,et al.  On a Theory of the van der Waals Adsorption of Gases , 1940 .

[40]  Weng Lihui,et al.  生体吸収性ミクロスフェア及びLC Beadの薬物負荷および送達特性のin vitro比較研究 , 2016 .

[41]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[42]  L. Hench,et al.  Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. , 2001, Journal of biomedical materials research.