Invertibility of a 1-D discrete ordinates canopy reflectance model

[1]  A. Kuusk A fast, invertible canopy reflectance model , 1995 .

[2]  A. Kuusk A multispectral canopy reflectance model , 1994 .

[3]  A. Kuusk,et al.  Evaluation Of One Dimensional Analytical Models For Vegetation Canopies , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[4]  Ranga B. Myneni,et al.  Remote sensing of solar radiation absorbed and reflected by vegetated land surfaces , 1992, IEEE Trans. Geosci. Remote. Sens..

[5]  A. Kuusk Determination of vegetation canopy parameters from optical measurements , 1991 .

[6]  Andres Kuusk,et al.  The angular distribution of reflectance and vegetation indices in barley and clover canopies , 1991 .

[7]  S. Prince A model of regional primary production for use with coarse resolution satellite data , 1991 .

[8]  G. Collatz,et al.  Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer , 1991 .

[9]  Ranga B. Myneni,et al.  Photon-Vegetation Interactions , 1991, Springer Berlin Heidelberg.

[10]  William H. Press,et al.  Numerical recipes , 1990 .

[11]  A. Marshak,et al.  Inversion of Monte Carlo Model for Estimating Vegetation Canopy Parameters , 1990 .

[12]  R. Dickinson,et al.  Relating surface albedos in GCM to remotely sensed data , 1990 .

[13]  R. Dickinson,et al.  A physical model of the bidirectional reflectance of vegetation canopies: 2. Inversion and validation , 1990 .

[14]  A. Marshak The effect of the hot spot on the transport equation in plant canopies , 1989 .

[15]  D. Diner,et al.  MISR: A multiangle imaging spectroradiometer for geophysical and climatological research from Eos , 1989 .

[16]  R. Myneni,et al.  Measuring and modeling spectral characteristics of a tallgrass prairie , 1989 .

[17]  A. Kuusk,et al.  A reflectance model for the homogeneous plant canopy and its inversion , 1989 .

[18]  R. Myneni,et al.  Radiative transfer in vegetation canopies with anisotropic scattering , 1988 .

[19]  N. Goel Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data , 1988 .

[20]  Ranga B. Myneni,et al.  Photon transport in vegetation canopies with anisotropic scattering Part I. Scattering phase functions in one angle , 1988 .

[21]  R. Myneni,et al.  Photon transport in vegetation canopies with anisotropic scattering Part IV. Discrete-ordinates/exact-kernel technique for two-angle photon transport in slab geometry , 1988 .

[22]  P. J. Camillo,et al.  A canopy reflectance model based on an analytical solution to the multiple scattering equation , 1987 .

[23]  A. Strahler,et al.  Geometric-Optical Modeling of a Conifer Forest Canopy , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[24]  V. Vanderbilt,et al.  Plant Canopy Specular Reflectance Model , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[25]  N. Goel,et al.  Simple Beta Distribution Representation of Leaf Orientation in Vegetation Canopies1 , 1984 .

[26]  Richard L. Thompson,et al.  Inversion of vegetation canopy reflectance models for estimating agronomic variables. V. Estimation of leaf area index and average leaf angle using measured canopy reflectances , 1984 .

[27]  L. Biehl,et al.  Soybean canopy reflectance modeling data sets , 1984 .

[28]  Richard L. Thompson,et al.  Inversion of vegetation canopy reflectance models for estimating agronomic variables. IV. Total inversion of the SAIL model , 1984 .

[29]  N. Goel,et al.  Inversion of vegetation canopy reflectance models for estimating agronomic variables. III - Estimation using only canopy reflectance data as illustrated by the suits model. IV - Total inversion of the SAIL model. [Scattering by Arbitrarily Inclined Leaves , 1984 .

[30]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[31]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modeling: The Scattering by Arbitrarily Inclined Leaves (SAIL) model , 1984 .

[32]  Richard L. Thompson,et al.  Inversion of vegetation canopy reflectance models for estimating agronomic variables. II. Use of angle transforms and error analysis as illustrated by suits' model , 1984 .

[33]  N. Goel,et al.  Inversion of vegetation canopy reflectance models for estimating agronomic variables. I. Problem definition and initial results using the Suits model , 1983 .

[34]  Daniel S. Kimes,et al.  Diurnal variations of vegetation canopy structure , 1983 .

[35]  J. Norman,et al.  Radiative Transfer in an Array of Canopies1 , 1983 .

[36]  J. Monteith,et al.  The Radiation Regime and Architecture of Plant Stands. , 1983 .

[37]  R. Dickinson Land Surface Processes and Climate—Surface Albedos and Energy Balance , 1983 .

[38]  Kevin J. Madders,et al.  EUROPEAN SPACE AGENCY , 1983 .

[39]  J. Ross The radiation regime and architecture of plant stands , 1981, Tasks for vegetation sciences 3.

[40]  F. Eaton,et al.  Reflected irradiance indicatrices of natural surfaces and their effect on albedo. , 1979, Applied optics.

[41]  B. Barfield,et al.  Modification of the aerial environment of plants , 1979 .

[42]  E. Lemaster,et al.  Suits reflectance models for wheat and cotton: theoretical and experimental tests. , 1977, Applied optics.

[43]  G. Suits The calculation of the directional reflectance of a vegetative canopy , 1971 .

[44]  Gwynn H. Suits,et al.  The cause of azimuthal variations in directional reflectance of vegetative canopies , 1971 .