Bandgap calculations for conjugated polymers

Various molecular and solid state quantum chemical methods are compared for their performance in predicting the bandgaps of conjugated polymers. Extrapolations based on oligomers provide an alternative way to calculate bandgaps. A combination of semi-empirical geometry optimization followed by a hybrid functional density functional theory (DFT) calculation for the energy levels of molecular oligomers provides a reliable and computationally efficient method for predicting bandgaps of a group of diverse conjugated polymers.

[1]  J. Reynolds,et al.  Poly(3,4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future , 2000 .

[2]  A. Heeger,et al.  The electronic and electrochemical properties of poly(isothianaphthene) , 1985 .

[3]  Mark A. Ratner,et al.  Accurate Prediction of Band Gaps in Neutral Heterocyclic Conjugated Polymers , 2002 .

[4]  Lawrence W. Shacklette,et al.  The electronic and electrochemical properties of poly(phenylene vinylenes) and poly(thienylene vinylenes): An experimental and theoretical study , 1989 .

[5]  J. Brédas,et al.  The density matrix renormalization group method: Application to the low-lying electronic states in conjugated polymers , 2000 .

[6]  Raymond A. Poirier,et al.  Accurate Method for Obtaining Band Gaps in Conducting Polymers Using a DFT/Hybrid Approach , 1998 .

[7]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[8]  A. Heeger,et al.  Charge storage in doped poly(thiophene): Optical and electrochemical studies , 1984 .

[9]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[10]  J. Brédas,et al.  Towards a coherent description of the nature of the photogenerated species in the lowest-lying one-photon allowed excited state of isolated conjugated chains , 1997 .

[11]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[12]  R. Friend,et al.  Polymer electroluminesence in the near infra-red , 1994 .

[13]  Y. Yamashita,et al.  Small band-gap polymers involving tricyclic nonclassical thiophene as a building block , 2002 .

[14]  R. L. Elsenbaumer,et al.  Synthesis, Characterization, and Electrical Properties of Poly(1-alkyl-2,5-pyrrylene vinylenes): New Low Band Gap Conducting Polymers , 2000 .

[15]  Yong‐Sok Lee,et al.  The effect of heteroatomic substitutions on the band gap of polyacetylene and polyparaphenylene derivatives , 1988 .

[16]  J. Chien Polyacetylene: Chemistry, Physics, and Material Science , 1984 .

[17]  L. Lyons Energy gaps in organic semiconductors derived from electrochemical data , 1980 .

[18]  H. Villar,et al.  Ab initio and electron correlation corrected energy band structure of polymeric five-membered heterocycles , 1993 .

[19]  H. C. Longuet-Higgins,et al.  The alternation of bond lengths in long conjugated chain molecules , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[21]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[22]  J. Brédas,et al.  Theoretical investigation of the structure and electronic properties of poly(dithieno[3,4-b:3',4'-d]thiophene), a small-band-gap conjugated polymer , 1993 .

[23]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[24]  Giovanni Vignale,et al.  Electronic density functional theory : recent progress and new directions , 1998 .

[25]  Alan J. Heeger,et al.  Solitons in conducting polymers , 1988 .

[26]  H. Nalwa Handbook of organic conductive molecules and polymers , 1997 .

[27]  A. Heeger,et al.  Structural determination of the symmetry-breaking parameter in trans-(CH)/sub x/ , 1982 .

[28]  D. Dudis Optical bandgaps from ab initio methods: an examination of the singlet-triplet approximation , 1992 .

[29]  M. Mckee,et al.  Calculations of band gaps in polyaniline from theoretical studies of oligomers , 2000 .

[30]  Dennis S. Marynick,et al.  Modified extended Hückel band calculations on conjugated polymers , 1992 .

[31]  P. Surján,et al.  Quinoid vs aromatic structure of polyisothianaphthene , 1990 .

[32]  J. Roncali Synthetic Principles for Bandgap Control in Linear pi-Conjugated Systems. , 1997, Chemical reviews.

[33]  Jean-Luc Brédas,et al.  Conjugated polymers : the novel science and technology of highly conducting and nonlinear optically active materials , 1991 .

[34]  Yuansheng Jiang,et al.  Extraction of polymer properties from oligomer calculations , 1990 .

[35]  G. Sotzing,et al.  Poly(thieno[3,4-b]thiophene). A New Stable Low Band Gap Conducting Polymer , 2001 .

[36]  White,et al.  Local-density-functional results for the dimerization of trans-polyacetylene: Relationship to the band-gap problem. , 1987, Physical review. B, Condensed matter.

[37]  J. Pople,et al.  Approximate Self‐Consistent Molecular‐Orbital Theory. V. Intermediate Neglect of Differential Overlap , 1967 .

[38]  D. Yaron,et al.  Quantum chemical investigation of biexcitons in conjugated polymers , 2003 .

[39]  J. Ladik,et al.  Quantum theory of polymers as solids , 1988 .

[40]  C. S. Yannoni,et al.  Molecular Geometry of cis- and trans-Polyacetylene by Nutation NMR Spectroscopy , 1983 .

[41]  R. Hierle,et al.  Design and Synthesis of Push−Pull Chromophores for Second-Order Nonlinear Optics Derived from Rigidified Thiophene-Based π-Conjugating Spacers , 2002 .

[42]  M. Kertész,et al.  The effect of side-group substitution on the energy gaps of phenylene and thienylene oligomers and polymers , 1992 .

[43]  Barry T. Pickup,et al.  Quantum theory of molecular electronic structure , 1980 .

[44]  Suhai Electron correlation and dimerization in trans-polyacetylene: Many-body perturbation theory versus density-functional methods. , 1995, Physical review. B, Condensed matter.

[45]  Bernard Kirtman,et al.  Extrapolation methods for improving the convergence of oligomer calculations to the infinite chain limit of quasi-one-dimensional stereoregular polymers , 2000, math/0004115.

[46]  M. Kertész,et al.  Energy gap and bond length alternation in heterosubstituted narrow gap semiconducting polymers , 1987 .

[47]  G. Wegner,et al.  Well-defined pyrrole oligomers : electrochemical and UV/vis studies , 1992 .

[48]  J. Cioslowski,et al.  Bulk properties from finite‐cluster calculations. VI. A finite‐size perturbation theory for the Hartree–Fock energy of linear oligomers , 1991 .

[49]  S. Moratti,et al.  Synthesis of low band gap polymers : Studies in polyisothianaphthene , 2001 .

[50]  P. Surján,et al.  Electronic structure and optical absorption of poly(biisothianaphthene-methine) and poly(isonaphthothiophene-thiophene): two low-band-gap polymers , 1991 .

[51]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap theory for transition metal complexes: Fe, Co and Cu chlorides , 1979 .

[52]  M. Kertész,et al.  The effects of electron correlation on the degree of bond alternation and electronic structure of oligomers of polyacetylene , 1997 .

[53]  F. E. Karasz,et al.  Ultraviolet and visible spectroscopy of poly(paraphenylene vinylene) , 1987 .

[54]  D. P. Nairns,et al.  The application of electrochemistry to the measurement of selected intrinsic properties of polyacetylene , 1989 .

[55]  Georg Kresse,et al.  Performance of the Vienna ab initio simulation package (VASP) in chemical applications , 2003 .

[56]  N. H. March,et al.  Electron Correlation in the Solid State , 1995 .

[57]  R. Loutfy,et al.  Investigation of energy levels due to transition metal impurities in metal‐free phthalocyanine , 1980 .

[58]  Broken‐symmetry (spin‐restricted) hartree‐fock crystal orbitals in an infinite one‐dimensional model , 1975 .

[59]  Miklos Kertesz,et al.  Energetics and geometry of conducting polymers from oligomers , 1991 .

[60]  V. Parker Energetics of electrode reactions. II. The relationship between redox potentials, ionization potentials, electron affinities, and solvation energies of aromatic hydrocarbons , 1976 .

[61]  R. H. Friend,et al.  Efficient light-emitting diodes based on polymers with high electron affinities , 1993, Nature.

[62]  Rodney J. Bartlett,et al.  Second‐order many‐body perturbation‐theory calculations in extended systems , 1996 .

[63]  G. Kang,et al.  Photoluminescence and electroluminescence of vacuum-deposited poly(p-phenylene) thin film , 2001 .

[64]  T. Yamabe,et al.  Electronic structures of polyyne derivatives with sulfur addition: design of new conducting polymers , 1990 .