Passivation engineering for hysteresis-free mixed perovskite solar cells

[1]  B. Richards,et al.  Spontaneous enhancement of the stable power conversion efficiency in perovskite solar cells , 2020, Journal of Materials Chemistry A.

[2]  Miaoran Zhang,et al.  Red‐Carbon‐Quantum‐Dot‐Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells , 2019, Advanced materials.

[3]  Jinsong Huang,et al.  Imperfections and their passivation in halide perovskite solar cells. , 2019, Chemical Society reviews.

[4]  S. De Wolf,et al.  Defect and Contact Passivation for Perovskite Solar Cells , 2019, Advanced materials.

[5]  Z. Ren,et al.  Facile synthesis of composite tin oxide nanostructures for high-performance planar perovskite solar cells , 2019, Nano Energy.

[6]  Hongwei Hu,et al.  A facile method to evaluate the influence of trap densities on perovskite solar cell performance , 2019, Journal of Materials Chemistry C.

[7]  A. Ng,et al.  Perovskite Solar Cells: Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells (Adv. Energy Mater. 19/2019) , 2019, Advanced Energy Materials.

[8]  Tulus,et al.  Control of Surface Defects in ZnO Nanorod Arrays with Thermally Deposited Au Nanoparticles for Perovskite Photovoltaics , 2019, ACS Applied Energy Materials.

[9]  D. Kuang,et al.  Bifacial Contact Junction Engineering for High-Performance Perovskite Solar Cells with Efficiency Exceeding 21. , 2019, Small.

[10]  Jinsong Huang,et al.  Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells , 2019, Science Advances.

[11]  N. Park,et al.  On the Current–Voltage Hysteresis in Perovskite Solar Cells: Dependence on Perovskite Composition and Methods to Remove Hysteresis , 2019, Advanced materials.

[12]  Hyuck-Mo Lee,et al.  Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells , 2019, Nature Communications.

[13]  Gang Wang,et al.  Solvothermal synthesis of highly crystalline SnO2 nanoparticles for flexible perovskite solar cells application , 2019, Materials Letters.

[14]  Tae Woong Kim,et al.  Direct Observation of the Tunneling Phenomenon in Organometal Halide Perovskite Solar Cells and Its Influence on Hysteresis , 2018, ACS Energy Letters.

[15]  M. B. Upama,et al.  Bilayer SnO2 as Electron Transport Layer for Highly Efficient Perovskite Solar Cells , 2018, ACS Applied Energy Materials.

[16]  K. Catchpole,et al.  A Universal Double‐Side Passivation for High Open‐Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate) , 2018, Advanced Energy Materials.

[17]  Yang Yang,et al.  A Cryogenic Process for Antisolvent‐Free High‐Performance Perovskite Solar Cells , 2018, Advanced materials.

[18]  F. Rosei,et al.  Solvent-Antisolvent Ambient Processed Large Grain Size Perovskite Thin Films for High-Performance Solar Cells , 2018, Scientific Reports.

[19]  F. Gao,et al.  Defects engineering for high-performance perovskite solar cells , 2018, npj Flexible Electronics.

[20]  Xingwang Zhang,et al.  SnO2 : A Wonderful Electron Transport Layer for Perovskite Solar Cells. , 2018, Small.

[21]  Wai Kin Chan,et al.  Understanding the Doping Effect on NiO: Toward High‐Performance Inverted Perovskite Solar Cells , 2018 .

[22]  A. Djurišić,et al.  Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells , 2018, Solar Energy Materials and Solar Cells.

[23]  G. Fang,et al.  Effective Carrier‐Concentration Tuning of SnO2 Quantum Dot Electron‐Selective Layers for High‐Performance Planar Perovskite Solar Cells , 2018, Advanced materials.

[24]  Kai Zhu,et al.  Scalable fabrication of perovskite solar cells , 2018 .

[25]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[26]  H. Jung,et al.  Passivation in perovskite solar cells: A review , 2018 .

[27]  P. Prasad,et al.  Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker , 2018 .

[28]  Y. Murata,et al.  Roles of Polymer Layer in Enhanced Photovoltaic Performance of Perovskite Solar Cells via Interface Engineering , 2018 .

[29]  A. Djurišić,et al.  Characterization of Low-Frequency Excess Noise in CH3NH3PbI3-Based Solar Cells Grown by Solution and Hybrid Chemical Vapor Deposition Techniques. , 2018, ACS applied materials & interfaces.

[30]  Yue Zhang,et al.  Efficient Yttrium(III) Chloride-Treated TiO2 Electron Transfer Layers for Performance-Improved and Hysteresis-Less Perovskite Solar Cells. , 2018, ChemSusChem.

[31]  Chunfu Zhang,et al.  A PCBM-Modified TiO2 Blocking Layer towards Efficient Perovskite Solar Cells , 2017 .

[32]  Man Kwong Wong,et al.  Synthesis of Lead-Free Perovskite Films by Combinatorial Evaporation: Fast Processes for Screening Different Precursor Combinations , 2017 .

[33]  Jongmin Choi,et al.  Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (η = 21.1%) , 2017 .

[34]  K. Catchpole,et al.  Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis , 2017 .

[35]  N. Park,et al.  Interfacial Modification of Perovskite Solar Cells Using an Ultrathin MAI Layer Leads to Enhanced Energy Level Alignment, Efficiencies, and Reproducibility. , 2017, The journal of physical chemistry letters.

[36]  A. Djurišić,et al.  Investigation of high performance TiO2 nanorod array perovskite solar cells , 2017 .

[37]  Jin-seong Park,et al.  Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells , 2017 .

[38]  U. Bach,et al.  Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cells , 2017, Nature Communications.

[39]  Wei Chen,et al.  Perovskite solar cells - An overview of critical issues , 2017 .

[40]  Juntao Li,et al.  Efficient Indium‐Doped TiOx Electron Transport Layers for High‐Performance Perovskite Solar Cells and Perovskite‐Silicon Tandems , 2017 .

[41]  A. Djurišić,et al.  Crystal Engineering for Low Defect Density and High Efficiency Hybrid Chemical Vapor Deposition Grown Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[42]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[43]  M. Kanatzidis,et al.  Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells , 2016 .

[44]  R. Friend,et al.  Impact of a Mesoporous Titania-Perovskite Interface on the Performance of Hybrid Organic-Inorganic Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[45]  J. Teuscher,et al.  Unreacted PbI2 as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[46]  Zonglong Zhu,et al.  A Low‐Temperature, Solution Processable Tin Oxide Electron‐Transporting Layer Prepared by the Dual‐Fuel Combustion Method for Efficient Perovskite Solar Cells , 2016 .

[47]  Satyaprasad P. Senanayak,et al.  Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH3NH3PbI3 Perovskite , 2016 .

[48]  Man Kwong Wong,et al.  Stability issues of the next generation solar cells , 2016 .

[49]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[50]  Shangfeng Yang,et al.  Crystallinity and defect state engineering in organo-lead halide perovskite for high-efficiency solar cells , 2016 .

[51]  Wenguang Li,et al.  Improving the Extraction of Photogenerated Electrons with SnO2 Nanocolloids for Efficient Planar Perovskite Solar Cells , 2015 .

[52]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[53]  Suhuai Wei,et al.  Origin of High Electronic Quality in Structurally Disordered CH3NH3PbI3 and the Passivation Effect of Cl and O at Grain Boundaries , 2015 .

[54]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[55]  W. W. Leung,et al.  Efficiency enhancement by defect engineering in perovskite photovoltaic cells prepared using evaporated PbI2/CH3NH3I multilayers , 2015 .

[56]  Dong Hoe Kim,et al.  Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films , 2015 .

[57]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[58]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[59]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[60]  Jianhua Hao,et al.  Thermal Assisted Oxygen Annealing for High Efficiency Planar CH3NH3PbI3 Perovskite Solar Cells , 2014, Scientific Reports.

[61]  Shenghao Wang,et al.  High performance perovskite solar cells by hybrid chemical vapor deposition , 2014 .

[62]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[63]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[64]  John A. Carr,et al.  The identification, characterization and mitigation of defect states in organic photovoltaic devices: a review and outlook , 2013 .

[65]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[66]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[67]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[68]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[69]  A. Poruba,et al.  Optical absorption by defect states in organic solar cells , 2006 .

[70]  P. Cabarrocas,et al.  Studies by photothermal deflection spectroscopy of defect formation in a-Si:H , 1991 .