SIP-CESE MHD model of solar wind with adaptive mesh refinement of hexahedral meshes

Solar-interplanetary space involves many features, such as discontinuities and heliospheric current sheet, with spatial scales many orders of magnitude smaller than the system size. The scalable, massively parallel, block-based, adaptive-mesh refinement (AMR) promises to resolve different temporal and spatial scales on which solar-wind plasma occurs throughout the vast solar-interplanetary space with even less cells but can generate a good enough resolution. Here, we carry out the adaptive mesh refinement (AMR) implementation of our Solar-Interplanetary space-time conservation element and solution element (CESE) magnetohydrodynamic model (SIP-CESE MHD model) using a six-component grid system (Feng et al., 2007, 2010). The AMR realization of the SIP-CESE MHD model is naturalized directly in hexahedral meshes with the aid of the parallel AMR package PARAMESH available at http://sourceforge.net/projects/paramesh/. At the same time, the topology of the magnetic field expansion factor and the minimum angular separation (at the photosphere) between an open field foot point and its nearest coronal-hole boundary are merged into the model in order to determine the volumetric heating source terms. Our numerical results for the validation study of the solar-wind background of Carrington rotation 2060 show overall good agreements in the solar corona and in interplanetary space with the observations from the Solar and Heliospheric Observatory (SOHO) and spacecraft data from OMNI. (C) 2014 Elsevier B.V. All rights reserved.

[1]  Jörg Büchner,et al.  Space Plasma Simulation , 2003 .

[2]  J. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport , 2005, astro-ph/0501557.

[3]  S. Wu,et al.  Numerical Simulation of the 12 May 1997 CME Event , 2008 .

[4]  U. Michigan,et al.  TOWARD A REALISTIC THERMODYNAMIC MAGNETOHYDRODYNAMIC MODEL OF THE GLOBAL SOLAR CORONA , 2009, 0912.2647.

[5]  J. Linker,et al.  Global MHD Modeling of the Solar Corona and Inner Heliosphere for the Whole Heliosphere Interval , 2011 .

[6]  M. Vinokur,et al.  An analysis of finite-difference and finite-volume formulations of conservation laws , 1986 .

[7]  G. Tóth,et al.  Comparison of Some Flux Corrected Transport and Total Variation Diminishing Numerical Schemes for Hydrodynamic and Magnetohydrodynamic Problems , 1996 .

[8]  S. Wu,et al.  Validation of the 3D AMR SIP–CESE Solar Wind Model for Four Carrington Rotations , 2012 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Adiabatic and Isothermal Magnetohydrodynamics , 1998 .

[12]  K. Hayashi An MHD simulation model of time‐dependent global solar corona with temporally varying solar‐surface magnetic field maps , 2013 .

[13]  J. Steger,et al.  Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .

[14]  S. Wu,et al.  A Novel Numerical Implementation for Solar Wind Modeling by the Modified Conservation Element/Solution Element Method , 2007 .

[15]  T. Maung on in C , 2010 .

[16]  J. Linker,et al.  A Comparison between Global Solar Magnetohydrodynamic and Potential Field Source Surface Model Results , 2006 .

[17]  Feng Xueshang,et al.  Numerical Validation and Comparison of Three Solar Wind Heating Methods by the SIP-CESE MHD Model , 2011 .

[18]  X. Feng,et al.  RECONSTRUCTION OF THE CORONAL MAGNETIC FIELD USING THE CESE–MHD METHOD , 2011 .

[19]  J. Linker,et al.  Magnetohydrodynamic modeling of the solar corona during Whole Sun Month , 1999 .

[20]  Paul R. Woodward,et al.  A Simple Finite Difference Scheme for Multidimensional Magnetohydrodynamical Equations , 1998 .

[21]  Moujin Zhang,et al.  Solving the MHD equations by the space-time conservation element and solution element method , 2006, J. Comput. Phys..

[22]  Shamsul Qamar,et al.  On the application of a variant CE/SE method for solving two-dimensional ideal MHD equations , 2010 .

[23]  W. Matthaeus,et al.  SOLAR WIND MODELING WITH TURBULENCE TRANSPORT AND HEATING , 2011 .

[24]  Daniel N. Baker,et al.  What is space weather , 1998 .

[25]  Chaopeng Shen,et al.  Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations , 2011, J. Comput. Phys..

[26]  Dinshaw S. Balsara,et al.  Notes on the Eigensystem of Magnetohydrodynamics , 1996, SIAM J. Appl. Math..

[27]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[28]  John Lyon,et al.  The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code , 2004 .

[29]  J. Linker,et al.  Corotating interaction regions during the recent solar minimum: The power and limitations of global MHD modeling , 2012 .

[30]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[31]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[32]  Danesh K. Tafti,et al.  Comparison of some upwind-biased high-order formulations with a second-order central-difference scheme for time integration of the incompressible Navier-Stokes equations , 1996 .

[33]  R. Lionello Magnetohydrodynamics of Solar Coronal Plasmas in Cylindrical Geometry , 1998 .

[34]  M. Sun,et al.  A Solution-Adaptive Technique Using Unstructured Hexahedral Grids , 2001 .

[35]  Andrew G. Glen,et al.  APPL , 2001 .

[36]  S. Wu,et al.  A DATA-DRIVEN MODEL FOR THE GLOBAL CORONAL EVOLUTION , 2012 .

[37]  S. Wu,et al.  Simulation of the Unusual Solar Minimum with 3D SIP-CESE MHD Model by Comparison with Multi-Satellite Observations , 2011 .

[38]  K. Hayashi Magnetohydrodynamic Simulations of the Solar Corona and Solar Wind Using a Boundary Treatment to Limit Solar Wind Mass Flux , 2005 .

[39]  Björn Sjögreen,et al.  Development of low dissipative high order filter schemes for multiscale Navier-Stokes/MHD systems , 2006, J. Comput. Phys..

[40]  William J. Rider,et al.  A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov , 2004 .

[41]  T. Sanderson,et al.  Observations of the Sun's magnetic field during the recent solar maximum , 2003 .

[42]  Dinshaw Balsara,et al.  Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.

[43]  R. Frazin,et al.  A GLOBAL TWO-TEMPERATURE CORONA AND INNER HELIOSPHERE MODEL: A COMPREHENSIVE VALIDATION STUDY , 2012 .

[44]  X. Feng,et al.  Numerical study of successive CMEs during November 4–5, 1998 , 2008 .

[45]  V. Yurchyshyn,et al.  LOW-LATITUDE CORONAL HOLES AT THE MINIMUM OF THE 23rd SOLAR CYCLE , 2010, 1002.1685.

[46]  T. Tanaka,et al.  Generation mechanisms for magnetosphere-ionosphere current systems deduced from a three-dimensional MHD simulation of the solar wind-magnetosphere-ionosphere coupling processes , 1995 .

[47]  Rho-Shin Myong,et al.  On Godunov-Type Schemes for Magnetohydrodynamics , 1998 .

[48]  B. M. Marder,et al.  A method for incorporating Gauss' lasw into electromagnetic pic codes , 1987 .

[49]  Ren Zhou,et al.  Microchip Laser Feedback Interferometer with an Optical Path Multiplier , 2008 .

[50]  Andrea Mignone,et al.  A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme , 2009, J. Comput. Phys..

[51]  P. Janhunen,et al.  A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods , 2000 .

[52]  T. Fuller‐Rowell,et al.  Global Simulation of Magnetospheric Space Weather Effects of the Bastille Day Storm , 2001 .

[53]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .

[54]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[55]  Un-Hong Wong,et al.  Global magnetohydrodynamic simulations on multiple GPUs , 2014, Comput. Phys. Commun..

[56]  Sin-Chung Chang,et al.  Treatments of stiff source terms in conservation laws by the method of space-time conservation element/solution element , 1997 .

[57]  Philip C. E. Jorgenson,et al.  A Modified Space-Time Conservation Element and Solution Element Method for Euler and Navier-Stokes Equations , 1999 .

[58]  Gecheng Zha,et al.  E-CUSP Scheme for the Equations of Magnetothydrodynamics with High Order WENO Scheme , 2011 .

[59]  N. Lugaz,et al.  NUMERICAL INVESTIGATION OF A CORONAL MASS EJECTION FROM AN ANEMONE ACTIVE REGION: RECONNECTION AND DEFLECTION OF THE 2005 AUGUST 22 ERUPTION , 2011, 1106.5284.

[60]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[61]  B. M. Fulk MATH , 1992 .

[62]  X. Feng,et al.  A New Code for Nonlinear Force-free Field Extrapolation of the Global Corona , 2012, 1206.1989.

[63]  Dinshaw Balsara,et al.  Divergence-free adaptive mesh refinement for Magnetohydrodynamics , 2001 .

[64]  C. Stivers Class , 2010 .

[65]  K. Kusano,et al.  The HLLD Approximate Riemann Solver for Magnetospheric Simulation , 2010, IEEE Transactions on Plasma Science.

[66]  Stephen M. White,et al.  Forecasting F10.7 with solar magnetic flux transport modeling , 2012 .

[67]  K. Waagan,et al.  A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics , 2009, J. Comput. Phys..

[68]  J. Linker,et al.  MULTISPECTRAL EMISSION OF THE SUN DURING THE FIRST WHOLE SUN MONTH: MAGNETOHYDRODYNAMIC SIMULATIONS , 2008 .

[69]  Rony Keppens,et al.  Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics , 2012, J. Comput. Phys..

[70]  Gérard Gallice,et al.  Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws , 1997 .

[71]  R. Skoug,et al.  Weaker solar wind from the polar coronal holes and the whole Sun , 2008 .

[72]  Xueshang Feng,et al.  Modeling the Resistive MHD by the Cese Method , 2006 .

[73]  S. Osher,et al.  Propagation of error into regions of smoothness for non-linear approximations to hyperbolic equations , 1990 .

[74]  Tsuneo Tanaka Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields , 1994 .

[75]  S. Yu,et al.  Shock capturing without Riemann solver - A modified space-time CE/SE method for conservation laws , 1999 .

[76]  M. Dryer,et al.  Propagation of an interplanetary shock along the heliospheric plasma sheet , 1996 .

[77]  K. Kusano,et al.  A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .

[78]  Yang Liu,et al.  Comparison of Line-of-Sight Magnetograms Taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager , 2012 .

[79]  R. Grauer,et al.  A novel code for numerical 3-D MHD studies of CME expansion , 2009, 1204.3767.

[80]  David R. Chesney,et al.  Space Weather Modeling Framework: A new tool for the space science community , 2005, Journal of Geophysical Research.

[81]  S. Wu,et al.  MAGNETOHYDRODYNAMIC SIMULATION OF A SIGMOID ERUPTION OF ACTIVE REGION 11283 , 2013, 1306.1009.

[82]  Steven L. Liebling,et al.  AMR, stability and higher accuracy , 2005, gr-qc/0510111.

[83]  D. Schnack,et al.  Magnetohydrodynamic modeling of the global solar corona , 1999 .

[84]  M. Tokumaru,et al.  Non‐dipolar solar wind structure observed in the cycle 23/24 minimum , 2009 .

[85]  M. Velli,et al.  A Three-dimensional Model of the Solar Wind Incorporating Solar Magnetogram Observations , 2003 .

[86]  C. N. Arge,et al.  Ensemble Modeling of CME Propagation , 2013 .

[87]  S. Wu,et al.  THREE-DIMENSIONAL SOLAR WIND MODELING FROM THE SUN TO EARTH BY A SIP-CESE MHD MODEL WITH A SIX-COMPONENT GRID , 2010 .

[88]  Dongwook Lee,et al.  An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics , 2009, J. Comput. Phys..

[89]  Sin-Chung Chang,et al.  Wave computation in compressible flow using space-time conservation element and solution element method , 2001 .

[90]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[91]  Andrea Lani,et al.  A finite volume implicit time integration method for solving the equations of ideal magnetohydrodynamics for the hyperbolic divergence cleaning approach , 2011, J. Comput. Phys..

[92]  X. Feng,et al.  A NEW IMPLEMENTATION OF THE MAGNETOHYDRODYNAMICS-RELAXATION METHOD FOR NONLINEAR FORCE-FREE FIELD EXTRAPOLATION IN THE SOLAR CORONA , 2012, 1202.0930.

[93]  Leland Jameson,et al.  AMR vs High Order Schemes , 2003, J. Sci. Comput..

[94]  Moujin Zhang,et al.  Solving Magnetohydrodynamic Equations Without Special Treatment for Divergence-Free Magnetic Field , 2004 .

[95]  R. Frazin,et al.  A DATA-DRIVEN, TWO-TEMPERATURE SOLAR WIND MODEL WITH ALFVÉN WAVES , 2010 .

[96]  T. Ogino A three-dimensional MHD simulation of the interaction of the solar wind with the earth's magnetosphere - The generation of field-aligned currents , 1986 .

[97]  Stanley Osher,et al.  Propagation of error into regions of smoothness for accurate difference approximations to hyperbolic equations , 1977 .

[98]  Shengtai Li An HLLC Riemann solver for magneto-hydrodynamics , 2005 .

[99]  M. Moncuquet,et al.  TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE , 2010 .

[100]  L. Burlaga,et al.  MHD description of the dynamical relationships between a flux rope, streamer, coronal mass ejection, and magnetic cloud : An analysis of the January 1997 Sun-Earth connection event , 1999 .

[101]  W. Matthaeus,et al.  THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODELING OF THE SOLAR WIND INCLUDING PICKUP PROTONS AND TURBULENCE TRANSPORT , 2012 .

[102]  M. Aschwanden,et al.  Theoretical modeling for the stereo mission , 2008 .

[103]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[104]  N. Sheeley,et al.  ON THE WEAKENING OF THE POLAR MAGNETIC FIELDS DURING SOLAR CYCLE 23 , 2009 .

[105]  X. Feng,et al.  MHD numerical study of the latitudinal deflection of coronal mass ejection , 2013 .

[106]  S. Wu,et al.  A HYBRID SOLAR WIND MODEL OF THE CESE+HLL METHOD WITH A YIN–YANG OVERSET GRID AND AN AMR GRID , 2011, The Astrophysical Journal.

[107]  James M. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport in three dimensions , 2007, J. Comput. Phys..

[108]  Guang-Shan Jiang,et al.  A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics , 1999 .

[109]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[110]  E. Endeve,et al.  Two-dimensional Magnetohydrodynamic Models of the Solar Corona: Mass Loss from the Streamer Belt , 2003 .

[111]  孫 明宇 Numerical and experimental studies of shock wave interaction with bodies , 1998 .

[112]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[113]  Dinshaw S. Balsara Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows , 2010, J. Comput. Phys..

[114]  Yiqing Shen,et al.  E-CUSP scheme for the equations of ideal magnetohydrodynamics with high order WENO Scheme , 2012, J. Comput. Phys..

[115]  R. Walker,et al.  A magnetohydrodynamic simulation of the bifurcation of tail lobes during intervals with a northward interplanetary magnetic field , 1984 .

[116]  Philip L. Roe,et al.  An upwind scheme for magnetohydrodynamics , 1995 .

[117]  X. Feng,et al.  AMR Simulations of Magnetohydrodynamic Problems by the CESE Method in Curvilinear Coordinates , 2010 .

[118]  X. Feng,et al.  EXTRAPOLATION OF THE SOLAR CORONAL MAGNETIC FIELD FROM SDO/HMI MAGNETOGRAM BY A CESE-MHD-NLFFF CODE , 2013, 1304.2979.

[119]  Quentin F. Stout,et al.  Adaptive numerical algorithms in space weather modeling , 2012, J. Comput. Phys..

[120]  Katharine Gurski,et al.  An HLLC-Type Approximate Riemann Solver for Ideal Magnetohydrodynamics , 2001, SIAM J. Sci. Comput..

[121]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[122]  Bernard Parent,et al.  Positivity-preserving high-resolution schemes for systems of conservation laws , 2012, J. Comput. Phys..

[123]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[124]  S. McGregor,et al.  An MHD simulation of the inner heliosphere during Carrington rotations 2060 and 2068: Comparison with MESSENGER and ACE spacecraft observations , 2012 .

[125]  Sin-Chung Chang,et al.  A space-time conservation element and solution element method for solving the two- and three-dimensional unsteady euler equations using quadrilateral and hexahedral meshes , 2002 .

[126]  Joseph Shang,et al.  Three decades of accomplishments in computational fluid dynamics , 2004 .

[127]  Tatsuki Ogino Three‐dimensional global MHD simulation code for the Earth's magnetosphere using HPF/JA , 2002, Concurr. Comput. Pract. Exp..

[128]  Dinshaw S. Balsara,et al.  Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics , 2012, J. Comput. Phys..

[129]  R. Davies,et al.  Astronomical Society of the Pacific Conference Series , 2010 .

[130]  Phillip Colella,et al.  A higher-order Godunov method for the equations of ideal magnetohydrodynamics , 1992 .

[131]  Wai Ming To,et al.  Application of the space-time conservation element and solution element method to one-dimensional convection-diffusion problems , 2000 .

[132]  Dinshaw S. Balsara,et al.  Maintaining Pressure Positivity in Magnetohydrodynamic Simulations , 1999 .

[133]  Harlan E. Spence,et al.  An event‐based approach to validating solar wind speed predictions: High‐speed enhancements in the Wang‐Sheeley‐Arge model , 2005 .

[134]  Sin-Chung Chang The Method of Space-Time Conservation Element and Solution Element-A New Approach for Solving the Navier-Stokes and Euler Equations , 1995 .

[135]  S. Poedts,et al.  Models of Solar Wind Structures and Their Interaction with the Earth’s Space Environment , 2009 .

[136]  U. Ziegler,et al.  A semi-discrete central scheme for magnetohydrodynamics on orthogonal-curvilinear grids , 2011, J. Comput. Phys..

[137]  Sin-Chung Chang,et al.  Regular Article: The Space-Time Conservation Element and Solution Element Method: A New High-Resolution and Genuinely Multidimensional Paradigm for Solving Conservation Laws , 1999 .

[138]  Rony Keppens,et al.  Hybrid block-AMR in cartesian and curvilinear coordinates: MHD applications , 2007, J. Comput. Phys..

[139]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[140]  S. Mishra,et al.  Splitting based finite volume schemes for ideal MHD equations , 2009, J. Comput. Phys..

[141]  C. Xiang,et al.  GPU-accelerated computing of three-dimensional solar wind background , 2013, Science China Earth Sciences.

[142]  J. Hyman,et al.  Adaptive Mesh Refinement for Finite Difference WENO Schemes , 2022 .

[143]  Lyon,et al.  The solar wind-magnetosphere-ionosphere system , 2000, Science.

[144]  Mark H. Carpenter,et al.  Computational Considerations for the Simulation of Shock-Induced Sound , 1998, SIAM J. Sci. Comput..

[145]  M. Neugebauer The three‐dimensional solar wind at solar activity minimum , 1999 .