Star formation history of Canis Major OB1 II. A bimodal X-ray population revealed by XMM-Newton

The Canis Major OB1 Association has an intriguing scenario of star formation, especially in the Canis Major R1 (CMa R1) region traditionally assigned to a reflection nebula, but in reality an ionized region. This work is focused on the young stellar population associated to CMa R1, for which our previous results from ROSAT, optical and near-infrared data had revealed two stellar groups with different ages, suggesting a possible mixing of populations originated from distinct star-formation episodes. The X-ray data allow the detected sources to be characterized according to hardness ratios, light curves and spectra. Estimates of mass and age were obtained from the 2MASS catalogue, and used to define a complete subsample of stellar counterparts, for statistical purposes. A catalogue of 387 XMM-Newton sources is provided, 78% being confirmed as members or probable members of the CMa R1 association. Flares were observed for 13 sources, and the spectra of 21 bright sources could be fitted by a thermal plasma model. Mean values of fits parameters were used to estimate X-ray luminosities. We found a minimum value of log(L$_X$[erg/s]) = 29.43, indicating that our sample of low-mass stars (M$_\star$ $\leq$ 0.5 M$_\odot$), being faint X-ray emitters, is incomplete. Among the 250 objects selected as our complete subsample (defining our best sample), 171 are found to the East of the cloud, near Z CMa and dense molecular gas, 50% of them being young ( 10 Myr). The opposite happens to the West, near GU CMa, in areas lacking molecular gas: among 79 objects, 30% are young and 50% are older. These findings confirm that a first episode of distributed star formation occurred in the whole studied region ~10 Myr ago and dispersed the molecular gas, while a second, localized episode (< 5 Myr) took place in the regions where molecular gas is still present.

[1]  E. Feigelson,et al.  High-Energy Processes in Young Stellar Objects , 1999 .

[2]  J. Bally Overview of the Orion Complex , 2008, 0812.0046.

[3]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[4]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[5]  Cambridge,et al.  A Universal Stellar Initial Mass Function? A critical look at variations in extreme environments , 2010, 1001.2965.

[6]  A. Goodman,et al.  THE ANGULAR MOMENTUM OF MAGNETIZED MOLECULAR CLOUD CORES: A TWO-DIMENSIONAL–THREE-DIMENSIONAL COMPARISON , 2010, 1003.5118.

[7]  X-ray astronomy of stellar coronae , 2004, astro-ph/0406661.

[8]  E. Feigelson,et al.  X-RAY STAR CLUSTERS IN THE CARINA COMPLEX , 2011, 1103.0802.

[9]  Tucson,et al.  A Spitzer View of Protoplanetary Disks in the γ Velorum Cluster , 2008, 0806.2639.

[10]  D. Padgett,et al.  A WISE CENSUS OF YOUNG STELLAR OBJECTS IN CANIS MAJOR , 2015, Proceedings of the International Astronomical Union.

[11]  A. C. Cameron,et al.  Stellar magnetism: empirical trends with age and rotation , 2014, 1404.2733.

[12]  Paul V. Johnson,et al.  VizieR Online Data Catalog: H 2 , D 2 , and HD c 3 Π u; , 2017 .

[13]  J. Lépine,et al.  Models for Interstellar Extinction in the Galaxy , 2005 .

[14]  A. Kawamura,et al.  13CO (J=1–0) Survey of Molecular Clouds toward the Monoceros and Canis Major Region , 2004 .

[15]  J. Gregorio-Hetem,et al.  Characterisation of young stellar clusters , 2012, 1209.1585.

[16]  E. Feigelson,et al.  The Evolution of X-Ray Emission in Young Stars , 2005, astro-ph/0506052.

[17]  E. Bica,et al.  The embedded star clusters in the nebulae NGC 2327 and BRC 27 in Canis Majoris R1 , 2002 .

[18]  Sp,et al.  Star formation history of Canis Major R1 I. Wide-Field X-ray study of the young stellar population , 2009, 0909.2888.

[19]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[20]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[21]  Mark R. Krumholz,et al.  The big problems in star formation: The star formation rate, stellar clustering, and the initial mass function , 2014, 1402.0867.

[22]  T. Davis,et al.  The coronal X-ray - age relation and its implications for the evaporation of exoplanets , 2011, 1111.0031.

[23]  T. Preibisch The reliability of age measurements for Young Stellar Objects from Hertzsprung-Russell or color-magnitude diagrams , 2012 .

[24]  S. Sciortino,et al.  Chronology of star formation and disk evolution in the Eagle Nebula , 2010, 1008.0422.

[25]  M. E. van den Ancker,et al.  Timescale of mass accretion in pre-main-sequence stars , 2009, 0911.3320.

[26]  C. Watson,et al.  An improved age–activity relationship for cool stars older than a gigayear , 2017, 1706.08979.

[27]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[28]  I. M. Stewart,et al.  The XMM-Newton serendipitous source catalogue , 2002 .

[29]  F. Boulanger,et al.  Tracing the energetics and evolution of dust with Spitzer: a chapter in the history of the Eagle Nebula , 2011, 1103.2495.

[30]  E. Huff,et al.  Cluster Formation in Contracting Molecular Clouds , 2007, 0708.1004.

[31]  X. Koenig,et al.  A CLASSIFICATION SCHEME FOR YOUNG STELLAR OBJECTS USING THE WIDE-FIELD INFRARED SURVEY EXPLORER AllWISE CATALOG: REVEALING LOW-DENSITY STAR FORMATION IN THE OUTER GALAXY , 2014, 1407.2262.

[32]  M. Audard,et al.  A statistical analysis of X-ray variability in pre-main sequence objects of the Taurus molecular cloud , 2006, astro-ph/0608651.

[33]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[34]  E. Feigelson,et al.  The Origin of T Tauri X-Ray Emission: New Insights from the Chandra Orion Ultradeep Project , 2005, astro-ph/0506526.

[35]  R. Hilditch,et al.  The distribution of bright OB stars in the Canis Major–Puppis–Vela region of the Milky Way , 2000 .

[36]  G. Micela,et al.  Stellar Activity on the Young Suns of Orion: COUP Observations of K5-7 Pre-Main-Sequence Stars , 2005, astro-ph/0507151.

[37]  E. Feigelson,et al.  Determination of the gas-to-dust ratio in nearby dense clouds using X-ray absorption measurements , 2003, astro-ph/0306447.

[38]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[39]  Keivan G. Stassun,et al.  AN INTRODUCTION TO THE CHANDRA CARINA COMPLEX PROJECT , 2011, 1102.4779.

[40]  E. Feigelson,et al.  ROSAT X-Ray Study of the Chamaeleon I Dark Cloud. I. The Stellar Population , 1993 .

[41]  G. Rieke,et al.  The interstellar extinction law from 1 to 13 microns. , 1985 .

[42]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[43]  W. P. Chen,et al.  Triggered Star Formation in the Orion Bright-rimmed Clouds , 2005, astro-ph/0502061.

[44]  T. Montmerle,et al.  Spectroscopic characterization of X-ray emitting young stars associated with the Sh 2-296 nebula , 2015, 1501.03763.

[45]  Yoshiharu Kojima,et al.  A 1.85-m mm-submm Telescope for Large-Scale Molecular Gas Surveys in 12CO, 13CO, and C18O (J = 2–1) , 2013 .

[46]  E. Feigelson,et al.  ROSAT X-Ray Sources Embedded in the rho Ophiuchi Cloud Core , 1995 .

[47]  H. M. Günther,et al.  IRAS 20050+2720: ANATOMY OF A YOUNG STELLAR CLUSTER , 2010, 1012.1354.

[48]  MEMBERSHIP OF THE ORION NEBULA POPULATION FROM THE CHANDRA ORION ULTRADEEP PROJECT , 2005, astro-ph/0504370.

[49]  O. Ezhkova,et al.  The stellar composition of the star formation region CMa R1 – I. Results from new photometric and spectroscopic classifications , 1999 .

[50]  B. Elmegreen On the Rapid Collapse and Evolution of Molecular Clouds , 2007, 0707.2252.

[51]  E. Bica,et al.  The embedded star clusters in the nebulae vdB-RN 92 and Gy 3-7 in Canis Majoris R1 , 2003 .

[52]  J. Caballero,et al.  New deep XMM-Newton observations to the west of the σ Orionis cluster , 2008, 0809.0990.

[53]  The XMM-Newton extended survey of the Taurus molecular cloud (XEST) , 2006, astro-ph/0609160.

[54]  M. Meyer,et al.  Intrinsic near-infrared excesses of T tauri stars: Understanding the classical T tauri star locus , 1997 .

[55]  C. Ryter Interstellar extinction from infrared to X-rays: An overview , 1996 .

[56]  F. Palla Pre–Main Sequence Evolution of Star Forming Regions and Young Clusters , 2011 .

[57]  Stellar Coronal Astronomy , 2003, astro-ph/0302565.

[58]  F. Palla,et al.  Accelerating Star Formation in Clusters and Associations , 2000 .

[59]  L. Allen,et al.  A CORRELATION BETWEEN SURFACE DENSITIES OF YOUNG STELLAR OBJECTS AND GAS IN EIGHT NEARBY MOLECULAR CLOUDS , 2011, 1107.0966.

[60]  K. Flaherty,et al.  THE SPITZER SPACE TELESCOPE SURVEY OF THE ORION A AND B MOLECULAR CLOUDS. I. A CENSUS OF DUSTY YOUNG STELLAR OBJECTS AND A STUDY OF THEIR MID-INFRARED VARIABILITY , 2012, 1209.3826.

[61]  E. Feigelson,et al.  Bright X-Ray Flares in Orion Young Stars from COUP: Evidence for Star-Disk Magnetic Fields? , 2005, astro-ph/0506134.

[62]  F. Palla,et al.  Star Formation in Space and Time: Taurus-Auriga , 2002, astro-ph/0208554.

[63]  V. Ripepi,et al.  Pre-Main Sequence stars in the star forming complex Sh 2-284 ⋆ , 2010, 1009.0435.

[64]  R. Cutri,et al.  Extinction with 2MASS: Star Counts and Reddening toward the North America and Pelican Nebulae , 2001, astro-ph/0201373.

[65]  S. Hodgkin,et al.  XMM-Newton investigations of the Lambda Orionis star-forming region (XILO) - I. The young cluster Collinder 69 , 2010, 1010.2461.

[66]  K. Covey,et al.  NOTHING TO HIDE: AN X-RAY SURVEY FOR YOUNG STELLAR OBJECTS IN THE PIPE NEBULA , 2010, 1006.3556.

[67]  D. Liedahl,et al.  Collisional Plasma Models with APEC/APED: Emission-Line Diagnostics of Hydrogen-like and Helium-like Ions , 2001, astro-ph/0106478.

[68]  Manash R. Samal,et al.  A multiwavelength census of stellar contents in the young cluster NGC 1624 , 2010, 1010.2011.

[69]  C. McKee,et al.  Equilibrium Star Cluster Formation , 2006, astro-ph/0603278.