A Parallel hp-Multigrid Solver for Three-Dimensional Discontinuous Galerkin Discretizations of the Euler Equations

A combined h and p multigrid solution strategy is developed for high-order Discontinuous Galerkin discretizations of the three-dimensional Euler equations. This solver is used to compute inviscid compressible flow over realistic three-dimensional aerodynamic configurations, and the performance of the solver in terms of convergence efficiency and parallel scalability is investigated. The hp multigrid solver is found to deliver nearly optimal convergence rates, which are insensitive to the discretization order p, and to the mesh resolution h. The solver is also shown to scale well on massively parallel computer architectures, demonstrating good scalability up to 2008 processors of the NASA Columbia Supercomputer.

[1]  Paul F. Fischer,et al.  Hybrid Multigrid/Schwarz Algorithms for the Spectral Element Method , 2005, J. Sci. Comput..

[2]  S. F. Davis Simplified second-order Godunov-type methods , 1988 .

[3]  Li Wang,et al.  Implicit solution of the unsteady Euler equations for high-order accurate discontinuous Galerkin discretizations , 2006, J. Comput. Phys..

[4]  Michael A. Leschziner,et al.  Average-State Jacobians and Implicit Methods for Compressible Viscous and Turbulent Flows , 1997 .

[5]  Brian T. Helenbrook,et al.  Analysis of ``p''-Multigrid for Continuous and Discontinuous Finite Element Discretizations , 2003 .

[6]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[7]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[8]  David L. Darmofal,et al.  DEVELOPMENT OF A HIGHER-ORDER SOLVER FOR AERODYNAMIC APPLICATIONS , 2004 .

[9]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[10]  Rupak Biswas,et al.  An Application-Based Performance Characterization of the Columbia Supercluster , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[11]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[12]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[13]  D. Mavriplis An assessment of linear versus non-linear multigrid methods for unstructured mesh solvers , 2001 .

[14]  Edward N. Tinoco,et al.  Summary of Data from the Second AIAA CFD Drag Prediction Workshop (Invited) , 2004 .

[15]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[16]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[17]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[18]  Dimitri J. Mavriplis,et al.  MULTIGRID TECHNIQUES FOR UNSTRUCTURED MESHES , 1995 .

[19]  Derek M. Causon,et al.  On the Choice of Wavespeeds for the HLLC Riemann Solver , 1997, SIAM J. Sci. Comput..

[20]  Shahyar Pirzadeh,et al.  Three-dimensional unstructured viscous grids by the advancing-layers method , 1996 .

[21]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[22]  Dimitri J. Mavriplis,et al.  High-order discontinuous Galerkin methods using an hp-multigrid approach , 2006, J. Comput. Phys..

[23]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[24]  Edward N. Tinoco,et al.  Summary of the Fourth AIAA CFD Drag Prediction Workshop , 2010 .

[25]  George Em Karniadakis,et al.  Galerkin and discontinuous Galerkin spectral/hp methods , 1999 .

[26]  Dimitri J. Mavriplis,et al.  Discontinuous Galerkin Methods Using an hp-Multigrid Solver for Inviscid Compressible Flows on Three-dimensional Unstructured Meshes , 2006 .

[27]  D. A. Dunavant Economical symmetrical quadrature rules for complete polynomials over a square domain , 1985 .

[28]  Anthony T. Patera,et al.  Spectral element multigrid. I. Formulation and numerical results , 1987 .

[29]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[30]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[31]  F. Bassi,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2 D Euler Equations , 1998 .