Tracking an omnidirectional evader with a differential drive robot

In this paper we consider the surveillance problem of tracking a moving evader by a nonholonomic mobile pursuer. We deal specifically with the situation in which the only constraint on the evader’s velocity is a bound on speed (i.e., the evader is able to move omnidirectionally), and the pursuer is a nonholonomic, differential drive system having bounded speed.We formulate our problem as a game. Given the evader’s maximum speed, we determine a lower bound for the required pursuer speed to track the evader. This bound allows us to determine at the beginning of the game whether or not the pursuer can follow the evader based on the initial system configuration. We then develop the system model, and obtain optimal motion strategies for both players, which allow us to establish the long term solution for the game. We present an implementation of the system model, and motion strategies, and also present simulation results of the pursuit-evasion game.

[1]  Craig Becker,et al.  An Intelligent Observer , 1995, ISER.

[2]  J. T. Shwartz,et al.  On the Piano Movers' Problem : III , 1983 .

[3]  Masafumi Yamashita,et al.  Searching for a Mobile Intruder in a Polygonal Region , 1992, SIAM J. Comput..

[4]  Leonidas J. Guibas,et al.  Visibility-Based Pursuit-Evasion in a Polygonal Environment , 1997, WADS.

[5]  Timothy H. Chung On Probabilistic Search Decisions under Searcher Motion Constraints , 2008, WAFR.

[6]  Steven M. LaValle,et al.  Visibility-Based Pursuit-Evasion with Bounded Speed , 2008, WAFR.

[7]  Marcelo H. Ang,et al.  A greedy strategy for tracking a locally predictable target among obstacles , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[8]  Héctor H. González-Baños,et al.  Motion strategies for maintaining visibility of a moving target , 1997, Proceedings of International Conference on Robotics and Automation.

[9]  Geoffrey A. Hollinger,et al.  Efficient Multi-robot Search for a Moving Target , 2009, Int. J. Robotics Res..

[10]  Dan Halperin,et al.  Robust Geometric Computing in Motion , 2002, Int. J. Robotics Res..

[11]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[12]  Zexiang Li,et al.  Motion of two rigid bodies with rolling constraint , 1990, IEEE Trans. Robotics Autom..

[13]  H. Sussmann,et al.  Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[14]  T. D. Parsons,et al.  Pursuit-evasion in a graph , 1978 .

[15]  J. Schwartz,et al.  On the “piano movers'” problem I. The case of a two‐dimensional rigid polygonal body moving amidst polygonal barriers , 1983 .

[16]  Rufus Isaacs,et al.  Differential Games , 1965 .

[17]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[18]  Rafael Murrieta-Cid,et al.  A Sampling-Based Motion Planning Approach to Maintain Visibility of Unpredictable Targets , 2005, Auton. Robots.

[19]  Jean-Paul Laumond,et al.  A Complexity result for the pursuit-evasion game of maintaining visibility of a moving evader , 2008, 2008 IEEE International Conference on Robotics and Automation.

[20]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[21]  Héctor H. González-Baños,et al.  Real-time combinatorial tracking of a target moving unpredictably among obstacles , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[22]  Alejandro Sarmiento,et al.  Surveillance Strategies for a Pursuer with Finite Sensor Range , 2007, Int. J. Robotics Res..

[23]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[24]  Junming Xu,et al.  Theory and Application of Graphs , 2003, Network Theory and Applications.

[25]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[26]  Gaurav S. Sukhatme,et al.  Tracking Targets Using Multiple Robots: The Effect of Environment Occlusion , 2002, Auton. Robots.

[27]  Volkan Isler,et al.  Robotic routers , 2008, 2008 IEEE International Conference on Robotics and Automation.

[28]  Devin J. Balkcom,et al.  Time Optimal Trajectories for Bounded Velocity Differential Drive Vehicles , 2002, Int. J. Robotics Res..

[29]  J. Canny,et al.  Nonholonomic Motion Planning , 1992 .

[30]  I. Bronshtein,et al.  Manual de matemáticas para ingenieros y estudiantes , 1993 .

[31]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[32]  Sampath Kannan,et al.  Randomized pursuit-evasion in a polygonal environment , 2005, IEEE Transactions on Robotics.

[33]  Sourabh Bhattacharya,et al.  On the Existence of Nash Equilibrium for a Two-player Pursuit—Evasion Game with Visibility Constraints , 2010 .

[34]  S. Shankar Sastry,et al.  Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation , 2002, IEEE Trans. Robotics Autom..

[35]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[36]  V. Sohoni,et al.  On time optimal trajectories , 1968 .

[37]  Steven M. LaValle,et al.  Visibility-Based Pursuit-Evasion in an Unknown Planar Environment , 2004, Int. J. Robotics Res..

[38]  Lynne E. Parker,et al.  Distributed Algorithms for Multi-Robot Observation of Multiple Moving Targets , 2002, Auton. Robots.

[39]  S. Sastry,et al.  Probabilistic pursuit-evasion games: a one-step Nash approach , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).