Exact sequences on Powell–Sabin splits

We construct smooth finite elements spaces on Powell-Sabin triangulations that form an exact sequence. The first space of the sequence coincides with the classical $C^1$ Powell-Sabin space, while the others form stable and divergence-free yielding pairs for the Stokes problem. We develop degrees of freedom for these spaces that induce projections that commute with the differential operators.

[1]  Michael Neilan,et al.  Inf-Sup Stable Finite Elements on Barycentric Refinements Producing Divergence-Free Approximations in Arbitrary Dimensions , 2017, SIAM J. Numer. Anal..

[2]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[3]  Jan Groselj,et al.  Quartic splines on Powell-Sabin triangulations , 2016, Comput. Aided Geom. Des..

[4]  Martin Costabel,et al.  On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains , 2008, 0808.2614.

[5]  Shangyou Zhang Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids , 2011 .

[6]  Shangyou Zhang,et al.  A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..

[7]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[8]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[9]  Douglas N. Arnold,et al.  Quadratic velocity/linear pressure Stokes elements , 1992 .

[10]  Peter Alfeld,et al.  A trivariate clough-tocher scheme for tetrahedral data , 1984, Comput. Aided Geom. Des..

[11]  D. Arnold Finite Element Exterior Calculus , 2018 .

[12]  Guosheng Fu,et al.  Exact smooth piecewise polynomial sequences on Alfeld splits , 2018, Math. Comput..

[13]  Kaibo Hu,et al.  Generalized finite element systems for smooth differential forms and Stokes’ problem , 2016, Numerische Mathematik.

[14]  Zhang,et al.  ON THE P1 POWELL-SABIN DIVERGENCE-FREE FINITE ELEMENT FOR THE STOKES EQUATIONS , 2008 .

[15]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[16]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[17]  Jan Groselj,et al.  C1 cubic splines on Powell-Sabin triangulations , 2016, Appl. Math. Comput..

[18]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[19]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[20]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .