A framework of terminal sliding mode for force/position control of constrained manipulators

In this paper, a novel framework of terminal sliding mode is established for force/position control of robotic manipulators whose end-effectors are in contact with constrained surfaces. The framework introduces the terminal sliding mode control concept into both force tracking and position tracking and can serve as a basis for finite-time control study of constrained manipulators. The advantages of the proposed strategy are threefold: 1) the force tracking error and the position tracking error can both converge to zero in finite time; 2) the force convergence rate near the equilibrium and the steady-state force tracking precision are increased in comparison with conventional force tracking control methods; 3) the high gain of conventional force/position tracking control methods is significantly reduced in this method, which is more desirable in industrial applications. Lyapunov stability analysis and simulation study demonstrate the effectiveness of the proposed strategy.

[1]  Yu Tang,et al.  Terminal sliding mode control for rigid robots , 1998, Autom..

[2]  Shihua Li,et al.  Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics , 2011, Autom..

[3]  Jonqlan Lin,et al.  Hybrid fuzzy position/force control by adaptive network-based fuzzy inference system for robot manipulator mounted on oscillatory base , 2015 .

[4]  Xuan Sun,et al.  An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints , 2013, Commun. Nonlinear Sci. Numer. Simul..

[5]  Chun-Yi Su,et al.  Force/motion control of constrained robots using sliding mode , 1992 .

[6]  Zhihong Man,et al.  Continuous finite-time control for robotic manipulators with terminal sliding mode , 2003, Autom..

[7]  Xinghuo Yu,et al.  Terminal sliding mode control design for uncertain dynamic systems , 1998 .

[8]  Ahmed Rhif,et al.  Sliding mode-multimodel stabilising control using single and several sliding surfaces: simulation on an autonomous underwater vehicle , 2014, Int. J. Model. Identif. Control..

[9]  Feng Gao,et al.  Robust finite-time control approach for robotic manipulators , 2010 .

[10]  Xinghuo Yu,et al.  Terminal sliding mode control of MIMO linear systems , 1997 .

[11]  Gerd Hirzinger,et al.  Perfect position/force tracking of robots with dynamical terminal sliding mode control , 2001, J. Field Robotics.

[12]  Xinghuo Yu,et al.  Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances , 2013, Autom..

[13]  Yang Li,et al.  Adaptive terminal sliding mode control for finite-time chaos synchronisation with uncertainties and unknown parameters , 2014, Int. J. Comput. Appl. Technol..

[14]  Xinghuo Yu,et al.  Adaptive Terminal Sliding Mode Tracking Control for Rigid Robotic Manipulators with Uncertain Dynamics. , 1997 .

[15]  Tzuu-Hseng S. Li,et al.  Fuzzy terminal sliding-mode controller for robotic manipulators , 2005, IEEE International Conference on Mechatronics, 2005. ICM '05..

[16]  Abbas Erfanian,et al.  Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems , 2011, Fuzzy Sets Syst..

[17]  Dongya Zhao,et al.  Adaptive motion/force control of constrained manipulators using a new fast terminal sliding mode , 2014, Int. J. Comput. Appl. Technol..

[18]  Zhihong Man,et al.  Non-singular terminal sliding mode control of rigid manipulators , 2002, Autom..

[19]  Dongfeng Zhao,et al.  Robust Finite-Time Motion/Force Control for Constrained Robots , 2014 .

[20]  Shaoyuan Li,et al.  A new terminal sliding mode control for robotic manipulators , 2009, Int. J. Control.

[21]  Hong Ren Wu,et al.  A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators , 1994, IEEE Trans. Autom. Control..

[22]  George A. Rovithakis,et al.  Force/position tracking for a robotic manipulator in compliant contact with a surface using neuro-adaptive control , 2007, Autom..

[23]  Qing-Long Han,et al.  Network-based output tracking control of Van der Pol's oscillators , 2012, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society.

[24]  Sundarapandian Vaidyanathan,et al.  Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system , 2015, Int. J. Model. Identif. Control..

[25]  Shuzhi Sam Ge,et al.  Impedance adaptation for optimal robot–environment interaction , 2014, Int. J. Control.

[26]  Quanmin Zhu,et al.  A new TSMC prototype robust nonlinear task space control of a 6 DOF parallel robotic manipulator , 2010 .

[27]  Nikolaos G. Tsagarakis,et al.  Terminal sliding-mode based force tracking control of piezoelectric actuators for variable physical damping system , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Li Shu-ron Robust adaptive motion /force control for manipulators using backstepping , 2014 .

[29]  Jan Swevers,et al.  Finite-time tracking control for robot manipulators with actuator saturation , 2014 .

[30]  Kuang-Yow Lian,et al.  Sliding-mode motion/force control of constrained robots , 1998 .

[31]  Mohammad Danesh,et al.  Adaptive force-environment estimator for manipulators based on adaptive wavelet neural network , 2015, Appl. Soft Comput..

[32]  Saeed Behzadipour,et al.  Nonlinear model reference adaptive impedance control for human–robot interactions , 2014 .

[33]  Chian-Song Chiu,et al.  Robust adaptive motion/force tracking control design for uncertain constrained robot manipulators , 2004, Autom..

[34]  Quanmin Zhu,et al.  Adaptive backstepping sliding mode control for theodolite rotating systems , 2014, Int. J. Model. Identif. Control..

[35]  Xinghuo Yu,et al.  Fast terminal sliding-mode control design for nonlinear dynamical systems , 2002 .

[36]  Xinghuo Yu,et al.  Chattering free full-order sliding-mode control , 2014, Autom..

[37]  C. M. Kwan Robust adaptive force/motion control of constrained robots , 1996 .

[38]  Jun Hu,et al.  Adaptive position/force control of robot manipulators without velocity measurements: theory and experimentation , 1997, IEEE Trans. Syst. Man Cybern. Part B.