Low autocorrelation binary sequences

Binary sequences with minimal autocorrelations have applications in communication engineering, mathematics and computer science. In statistical physics they appear as groundstates of the Bernasconi model. Finding these sequences is a notoriously hard problem, that so far can be solved only by exhaustive search. We review recent algorithms and present a new algorithm that finds optimal sequences of length $N$ in time $\Theta(N\,1.73^N)$. We computed all optimal sequences for $N\leq 66$ and all optimal skewsymmetric sequences for $N\leq 119$.

[1]  Jonathan Jedwab,et al.  Advances in the merit factor problem for binary sequences , 2012, J. Comb. Theory, Ser. A.

[2]  D. Newman,et al.  The L 4 norm of a polynomial with coefficients , 1990 .

[3]  Marcel J. E. Golay A class of finite binary sequences with alternate auto-correlation values equal to zero (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[4]  Tom Høholdt,et al.  The Merit Factor Problem for Binary Sequences , 2006, AAECC.

[5]  Marc Mézard,et al.  Aging without disorder on long time scales , 1994 .

[6]  J. Storer,et al.  On binary sequences , 1961 .

[7]  Janez Brest,et al.  Low-autocorrelation binary sequences: On improved merit factors and runtime predictions to achieve them , 2014, Appl. Soft Comput..

[8]  K. Hoffmann,et al.  Low autocorrelation binary sequences: exact enumeration and optimization by evolutionary strategies , 1992 .

[9]  Kai-Uwe Schmidt,et al.  Barker sequences of odd length , 2016, Des. Codes Cryptogr..

[10]  G. Parisi,et al.  Replica field theory for deterministic models: I. Binary sequences with low autocorrelation , 1994, hep-th/9405148.

[11]  I. Shapiro Fourth Test of General Relativity , 1964 .

[12]  S. Mertens Exhaustive search for low-autocorrelation binary sequences , 1996 .

[13]  M. Mézard,et al.  Self induced quenched disorder: a model for the glass transition , 1994, cond-mat/9405075.

[14]  I. A. Pasha,et al.  Bi-alphabetic pulse compression radar signal design , 2000 .

[15]  Jonathan Jedwab,et al.  Littlewood Polynomials with Small $L^4$ Norm , 2012, ArXiv.

[16]  Jonathan Jedwab,et al.  A Survey of the Merit Factor Problem for Binary Sequences , 2004, SETA.

[17]  Steven David Prestwich Exploiting relaxation in local search for LABS , 2007, Ann. Oper. Res..

[18]  Marcel J. E. Golay,et al.  The merit factor of long low autocorrelation binary sequences , 1982, IEEE Trans. Inf. Theory.

[19]  R. P. Ingalls,et al.  FOURTH TEST OF GENERAL RELATIVITY: PRELIMINARY RESULTS. , 1968 .

[20]  Peter Borwein,et al.  Computational Excursions in Analysis and Number Theory , 2002 .

[21]  J. Bernasconi Low autocorrelation binary sequences : statistical mechanics and configuration space analysis , 1987 .

[22]  Carla Savage,et al.  A Survey of Combinatorial Gray Codes , 1997, SIAM Rev..

[23]  J. Littlewood Some problems in real and complex analysis , 1968 .

[24]  Cristopher Moore,et al.  The Nature of Computation , 2011 .

[25]  Janez Brest,et al.  Low-Autocorrelation Binary Sequences: on the Performance of Memetic-Tabu and Self-Avoiding Walk Solvers , 2014, ArXiv.

[26]  Steven David Prestwich Improved Branch-and-Bound for Low Autocorrelation Binary Sequences , 2013, ArXiv.

[27]  Bernhard Schmidt,et al.  New restrictions on possible orders of circulant Hadamard matrices , 2012, Des. Codes Cryptogr..

[28]  K. Nordtvedt The fourth test of general relativity , 1982 .